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Introduction

We give a concise development of the mathematics underlying the theory of arithmetic
groups towards applications in quantum computing, quantum information theory and
quantum field theory. Rather than aim for pedagogy, we organize concepts from most
general to least, so this is more like an instruction manual than a textbook. We begin
with general preliminaries on monoidal categories, duality, abelian categories and ten-
sor categories and continue with generalities on noncommutative rings with involution.
A rapid introduction to schemes and commutative rings follows. We then describe the
theory of separable algebras over fields with involution, specializing further to semisim-
ple, simple, central simple and quaternion. Then we focus on integrality and discuss
lattices and orders over integral domains and integral quadratic forms. We try not to
avoid the prime 2 because bits and qubits are too important.
Later chapters develop local/global principles, Clifford algebras and superalgebras with
involution. Future (hopefully near-final) revisions will better incorporate this material
earlier while including more on affine algebraic groups, class numbers, Galois and class
field theory.
Sources include

• Maximal Orders by Reiner [1]

• https://stacks.math.columbia.edu/

• The Book of Involutions [2]

• Lam, A First Course on Noncommutative Rings [3]

• Clark’s lecture notes
http://alpha.math.uga.edu/˜pete/noncommutativealgebra.pdf

• J. W. S. Cassels - Rational Quadratic forms [4]

• Knus, Quadratic and Hermitian Forms over Rings [5]

• Scharlau, Quadratic and Hermitian forms [6]

• Gille and Szamuely, Central Simple Algebras and Galois Cohomology [7]

• Roquette, The Brauer-Hasse-Noether Theorem: A Historical Perspective [8]

• McConnell and Robson, Noncommutative Noetherian Rings [9]

• Nebe, Rains and Sloane Self-dual codes and invariant theory [10]

• Brown and Goodearl, Lectures on Algebraic Quantum Groups

• Pierce, Associative Algebras

• De Meyer and Ingraham, Central Separable Algebras

https://stacks.math.columbia.edu/
http://alpha.math.uga.edu/~pete/noncommutativealgebra.pdf


Chapter 0
Category theory

0.1 Basic definitions

0.1.1 Categories

A category C consists of a collection C0 of objects and a collection C1 of morphisms.
Each morphism f ∈ C1 has a well-defined source s(f) ∈ C0 and target t(f) ∈ C0. We
write f : a → b to mean that s(f) = a and t(f) = b and write HomC(a, b) for the
morphisms from a to b. Furthermore,

• If f : a → b and g : b → c are morphisms, their composition gf : a → c is a
morphism.

• Composition is associative h(gf) = (hg)f .

• For each object a, there is an identity morphism 1a : a → a acting as the
identity for left and right composition.

Examples: Set, Mon, Ab, Grp, Ring, R-mod, Open(X), Path(Q)
We write a = b for the proposition that a and b, however constructed, are equal, and
may interpret it as a type whose elements are proof of such equality. A morphism
f : a → b is an isomorphism if there exists a morphism g : b → a with gf = 1a and
fg = 1b. A category is skeletal if isomorphism implies equality, i.e. if it has a single
object per isomorphism class.

0.1.2 Morphisms

A morphism f is a monomorphism, or is monic, if it is left cancellable in the sense
that fg1 = fg2 implies g1 = g2. A subobject of a is an equivalence class of monomor-
phisms f : a′ → a under isomorphisms on a′. Reversing arrows, a morphism f is an
epimorphism, or is epic, if it is right cancellable in the sense that g1f = g2f implies
g1 = g2, i.e. it only equalizes equal morphisms. A quotient of b is an equivalence class
of epimorphisms f : b→ b′ under isomorphisms on b′.
A morphism f equalizes a pair g1, g2 of parallel morphisms if g1f = g2f . An equalizer
of g1 and g2 is a morphism f : a′ → a through which any other equalizing morphism
h : a′ → a factors uniquely

a′ a b

a′′

f
g1

g2∃! h

10
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When they exist, equalizers are unique up to isomorphism so the corresponding sub-
object is called the equalizer. The uniqueness property implies that every equalizer is
monic.
Similarly, f coequalizes parallel morphisms g1 and g2 if fg1f = fg2. A coequalizer
is a morphism f : b→ b′ through which each coequalizing morphism h : b→ b′′ factors
uniquely

a b b′

b′′

g1

g2

f

h ∃!

Similar to the case with equalizers, when coequalizers exist, they are are epic and unique
up to isomorphism.

0.1.3 Objects

An object p is projective if each morphism p → b has a unique lift to any given
epimorphism a→ b as

a

p b.

∃!

Similarly, an object i is injective if each morphism a → i uniquely factors through
each monomorphism a→ b as in

a i.

b
∃!

An object is Noetherian if every increasing chain of subobjects (equivalently, decreas-
ing chain of quotients) stabilizes, and Artinian if every decreasing chain of subobjects
(equivalently, increasing chain of quotients) stabilizes.
An object is initial if it has a unique morphism to each object and final, or terminal,
if it has a unique morphism from each object. A zero object is both initial and
final. Such objects if they exist, are unique up to isomorphism. Example: Z and 0
are respectively the initial and final objects in Ring, wheres 0 is the zero object in any
category of modules.
An object in a category with a zero object is simple if has exactly two nonzero sub-
objects (equivalently, quotients): the zero object and itself. An object is finite if it
has a composition series, i.e. a finite sequence of successive subobjects with simple
quotients. Finite objects are both Noetherian and Artinian. The length of a finite
object is the length of any of its composition series.
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0.1.4 Functors

Let C and D be categories. A functor F : C → D is a map taking objects of C to
objects of D and morphisms of C to morphisms of D, that is covariant in the sense
that F (f ◦ g) = F (f) ◦ F (g), F (ida) = idF (a). A contravariant functor f : C→ D is
just a functor f : Cop → D i.e. a map on objects and morphisms that instead reverses
arrows F (f ◦ g) = F (g) ◦ F (f).

0.1.5 Natural transformations

A natural transformation η : F → G between functors F,G : C → D is given by a
natural family ηa ∈ HomC(F (a), G(a)) of morphisms such that for every morphism
f ∈ HomC(a, b) in C, we have ηbF (f) = G(f)ηa, i.e. the following diagram commutes:

F (a) F (b)

G(a) G(b).

F (f)

ηa ηb

G(f)

The functor category DC is the category whose objects are functors from C to D
and whose morphisms are natural transformations between them. Subfuctors are
subobjects in functor categories.
An equivalence between C and D consists of a pair of mutually quasi-inverse functors
F : C→ D and G : D→ C, by definition equipped with natural isomorphisms GF ' idC
and FG ' idD to the identity functors. A duality between the categories C and D is
similarly given by a pair of contravariant functors satisfying the same condition.
A skeleton of a category is an equivalent skeletal category.
Diagrams, products and coproducts.
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0.2 Monoidal categories

0.2.1 Coherence

A monoidal category is a category M equipped with a bifunctor ⊗ : M × M → M,
a tensor unit 1M ∈ M, isomorphisms 1M ⊗ 1M → 1M, − ⊗ 1M → idM and natural
isomorphisms 1M ⊗ − → idM and (− ⊗ −) ⊗ − → − ⊗ (− ⊗ −), the latter of which
satisfies the pentagon equations

(a⊗ (b⊗ c))⊗ d

((a⊗ b)⊗ c)⊗ d a⊗ ((b⊗ c)⊗ d)

(a⊗ b)⊗ (c⊗ d) a⊗ (b⊗ (c⊗ d)).

The unit isomorphisms define isomorphisms 1M ⊗ a → a and a ⊗ 1M → a satisfying
the triangle equations

(a⊗ 1)⊗ b a⊗ (1⊗ b)

a⊗ b.

Equivalently, the natural isomorphisms to idM in the above definition can be replaced
with isomorphisms 1M ⊗ a→ a and a⊗ 1M → a satisfying the triangle equations.
A monoidal functor is a functor F : M → N between monoidal categories that
is equipped with two coherence morphisms, F (·) ⊗N F (·) → F (· ⊗M ·) (between
functors M×M→ N) and 1N → F (1M), satisfying hexagon and square equations. The
monoidal functor is strict if the coherence maps are equalities and strong if they are
invertible. See Section 2.4 of [11] for more details.

There are 1
n+1

(
2n
n

)
ways of parenthesizing x1⊗· · ·⊗xn. MacLane’s Strictness Theorem

([11] 2.8.5) (each monoidal category is monoidally equivalent to a strict one) ⇒ Co-
herence Theorem ([11] 2.9.2) (any two isomorphisms built from associativity and unit
maps between parenthesizations of x1 ⊗ · · · ⊗ xn are equal).
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0.2.2 Braidings and symmetry

A braiding on a monoidal category M is an endomorphism R ∈ EndM(⊗) of the tensor
product functor ⊗ : M×M→ M satisfying

a⊗ b a′ ⊗ b′

b⊗ a b′ ⊗ a′

f⊗g

Ra,b Rb′,a′

f ′⊗g′

for all morphisms f : a→ a′ and g : b→ b′ as well as hexagon equations

(b⊗ a)⊗ c b⊗ (a⊗ c)

(a⊗ b)⊗ c b⊗ (c⊗ a)

a⊗ (b⊗ c) (b⊗ c)⊗ a

Fbac

Ra,cRa,b

Fabc

Ra,b⊗c

Fbca

for all triples a, b, c, along with identical equations for R−1. A braiding R is symmetric
if R2 = idM .
The Drinfeld center Z1(M) of any monoidal category M is braided.
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0.2.3 Duals and traces

A left dual of an object x in a monoidal category consists of an object x∗, an evalua-
tion morphism evx : x∗ ⊗ x→ 1 and a coevaluation morphism 1→ x⊗ x∗ such that
the following compositions are equal to the identity (suppressing the unit morphisms
of M):

x (x⊗ x∗)⊗ x x⊗ (x∗ ⊗ x) x

x∗ x∗ ⊗ (x⊗ x∗) (x∗ ⊗ x)⊗ x∗ x∗.

coevx⊗ idx αx,x∗,x idx⊗ evx

idx∗ ⊗ coevx∗ αx∗,x,x∗ evx∗ ⊗ idx∗

A right dual to x is an object ∗x together with evaluation ev′x : x ⊗ ∗x → 1 and
coevaluation coev′x : 1 → ∗x ⊗ x morphisms such that the analogous compositions are
identity morphisms:

x x⊗ (∗x⊗ x) (x⊗ ∗x)⊗ x x

∗x (∗x⊗ x)⊗ ∗x ∗x⊗ (x⊗ ∗x) ∗x.

idx⊗ coev′x α−1
x,∗x,x ev′x⊗idx

coev′∗x
⊗ id∗x α−1

∗x,x,∗x ev∗x⊗ id∗x

When they exist, left or right duals are unique up to unique isomorphism.
A morphism f : x → y between objects with left duals gives a morphism f ∗ : y∗ → x∗

between their left duals and similarly for right duals if they exist.
An object x with left and right duals is called dualizable (or rigid) and satisfies
∗(x∗) ' x ' (∗x)∗. A monoidal category is rigid if all of its objects are dualizable.
Left/right duals on a rigid category extend to a pair of mutually quasi-inverse duality
functors.
Exercise 2.10.15 in [11] explains the name: The only morphisms of monoidal functors
between rigid categories are isomorphisms.
The evaluation and coevaluation morphisms define a left and a right categorical trace

TrL : Hom(x, x∗∗)→ End(1), TrR : Hom(x, ∗∗x)→ End(1)

for each rigid object x. If x ' x∗∗, then TrL(f) TrR(f−1) = TrR(f) TrL(f−1) takes
the same value for every isomorphism f : x → x∗∗ and therefore assigns a unique
squared dimension |x|2 ∈ End(1) to x. A rigid object is invertible if evaluation and
coevaluation are isomorphisms, which is the case iff its squared dimension is 1.
A rigid monoidal category M is pivotal if it comes equipped with a pivotal struc-
ture idM ' ∗∗. Composing with the constituent isomorphisms x → x∗∗ defines a
left and right pivotal trace PTrL,PTrR : End(x) → End(1) and pivotal dimen-
sion PdimL(x) = PTrL(1x), PdimR(x) = PTrR(1x) for each object x. If these di-
mensions coincide for all objects, then M is spherical and the pivotal dimension is
Pdim(x) := PTr(1x). Note that spherical ⊂ pivotal ⊂ rigid.
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0.2.4 Twists

Let B be a rigid braided category. The Drinfeld isomorphism ([11] Definition 8.9.4)
on B is the natural isomorphism u : idB → ∗∗ defined by the compositions

a→ a⊗ a∗ ⊗ a∗∗ → a∗ ⊗ a⊗ a∗∗ → a∗∗.

For a proof that it is an isomorphism see Proposition 8.10.6 of [11]. It behaves as

ua ⊗ ub = ua⊗bRbaRab

under tensor products ([11] Proposition 8.9.3). The Drinfeld isomorphism u is a pivotal
structure iff it is monoidal iff the braiding is symmetric. However, because every natural
isomorphism idB ' ∗∗ has the form uθ for some θ ∈ Aut(idB) the twisted Drinfeld
isomorphism uθ is a pivotal structure iff

θa⊗b = (θa ⊗ θb)RbaRab, (1)

in which case θ is called a twist in Definition 8.10.1 of [11].

0.3 Enriched categories

Let M be a monoidal category. An M-category, or category enriched in M, is
a category C in which each HomC(a, b) is an object of M and each morphism of C
corresponds to a morphism 1M → HomC(a, b) in M, such that for each triple a, b, c ∈ C
of objects, there is an associated morphism

◦abc : Hom(b, c)⊗ Hom(a, b)→ Hom(a, c)

in M such that ◦abc(g ⊗ f) = gf for all f ∈ Hom(a, b) and g ∈ Hom(b, c), subject to
pentagon and triangle equations for associativity and units.

Example 0.3.1 A Set-category is called locally small.

Example 0.3.2 If R is a commutative ring, we call an R-mod-category an R-
linear category.

Example 0.3.3 A Cat-category is called a strict 2-category, with monoidal
structure given by the product of categories.

0.3.1 Locally small categories

A category C is locally small if it is a Set-category, so each HomC(x, y) is a set. Such
categories are always well powered (its subobjects form a set) and well copowered
(its quotients form a set).
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A functor F : C → D between locally small categories is an equivalence if it is fully
faithful (i.e. each HomC(x, y)→ HomD(F (x), F (y)) is bijective) and essentially sur-
jective (i.e. if every object of D is isomorphic to some F (x) with x ∈ C), in which case
the rest of the required data can be shown to exist but is not uniquely specified by F .
A category is small if it is locally small and has a set of objects. A small category C
is therefore described by a set C0 of objects, a set C1 of morphisms and four functions:
C1 → C0 (source and target objects of a morphism), C1×C0 C1 → C1 (composition), C0 →
C1 (identity morphism). More generally, categories can be viewed as instantiations of
abstract data types C0 and C1 with source, target, composition and identity being
operations defined on these types.
A category is essentially small if it has a small skeleton, i.e. is equivalent to a small
category, so its equivalence classes of objects form a set.
An essentially small category is Noetherian/Artinian if each object is, and if it has
a zero object, it is finite if every object is.
Let C be a locally small category. If w is an object of C, then Hom(w,−) : C→ Set is
a functor taking each morphism f : x → y to the function Hom(w, f) : Hom(w, x) →
Hom(w, y). Similarly, for each object z, the functor Hom(−, z) : Cop → Set takes
each morphism f : x → y to a function Hom(f, z) : Hom(y, z) → Hom(x, z). The
contravariant Hom functor Hom(−, z) is also known as the functor of points.

0.3.2 Representable functors

A functor F : C → Set is representable if F ' Hom(x,−) for some object x ∈ C.
We say that x represents F . Each morphism f ∈ Hom(y, x) determines a nat-
ural transformation η(f) : Hom(x,−) → Hom(y,−) of functors whose components
η(f)z : Hom(x, z) → Hom(y, z) are right composition η(f)z(g) = g ◦ f for g ∈
Hom(x, z).
Yoneda’s Lemma shows that representations are unique up to unique isomorphism:

Lemma 0.3.1 (Yoneda’s Lemma) Let C be a locally small category and let
F,G : C→ Set be functors represented by isomorphisms α : F → Hom(x,−) and
β : G → Hom(y,−). Then if γ : F → G is a morphism, there exists a unique
f ∈ Hom(y, x) such that

F (z) G(z)

Hom(x, z) Hom(y, z)

γz

αz βz

η(f)z

commutes for each object z ∈ C and the the natural family γz : F (z)→ G(z) acts
as γz = β−1

z ◦ η(f)z ◦ αz.
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A category C is concrete if it is equipped with a faithful functor F : C → Set, and
concretizable if such a faithful functor exists. Concrete categories formalize the notion
of categories that are “realized by sets.”

Exercise 0.3.1 Show that the category hTop of topological spaces and homotopy
classes of maps between them is not concretizable.

Exercise 0.3.2 Show that every surjection in a concrete category is an epimor-
phism.

Concrete categories can contain non-surjective epimorphisms, such as Z ↪→ Q in Ring
and N ↪→ Z in Mon. A morphism in the category of Hausdorff spaces and continuous
maps is epic iff it has a dense image. On the other hand, every epimorphism is surjective
in the categories of e.g. sets, posets, relations, groups, abelian groups, finite groups,
modules, topological spaces and compact Hausdorff spaces.

Exercise 0.3.3 Show that an object p is projective iff the functor Hom(p,−)
preserves epimorphisms. Characterize injective objects similarly using the functor
of points.

Exercise 0.3.4 Show that the following are equivalent [12]:

• every set is projective

• the Axiom of Choice

• Zorn’s Lemma

• the Well-ordering Theorem

• Tychonoff’s Theorem: Products of compact spaces are compact for the
product topology.

0.3.3 Preadditive categories

A preadditive category is an Ab-category, or equivalently, a Z-linear category. It
is a theorem that every finite product in a preadditive category is a coproduct and
vice-versa, hence called a biproduct ⊕ or sum (direct or indirect, they are isomorphic
and we will try not to worry about this in these notes).
Each object a of a preadditive category has an endomorphism ring

End(a) = Hom(a, a)

with multiplication given by composition. In particular, a preadditive category with
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one object is (the delooping BA) of a ring A, just as a category with one object is (the
delooping of) a monoid and a groupoid with one object is (the delooping of) a group.
The kernel of a morphism f : a → b in a preadditive category is defined to be the
equalizer

ker(f) a b

f

0

of f and the zero morphism 0 : a→ b. Similarly, the cokernel is the coequalizer

a b coker(f)
f

0

When they exist, they are unique up to isomorphism, as with all universal constructions.
Kernels are are monic and cokernels are epic. The equalizer and coequalizer of f and g
are ker(f − g) and coker(f − g).
If C and D are categories and D is preadditive, the functor category DC is also pread-
ditive. A functor F : C → D between preadditive categories is additive if, for each
a, b ∈ C, F : Hom(a, b) → Hom(F (a), F (b)) is a homomorphism of abelian groups. If
both C and D are preadditive, the module category M(C,D) ⊂ DC of additive functors
and natural transformations between them is preadditive. To see that this generalizes
the category of modules over a ring, note that if η : F → G is a morphism in M(C,Ab)
and a ∈ C, then ηa : F (a)→ G(a) is a homomorphism of End(a)-modules.
If R is a commutative ring, we call an R-mod-category a linear category, or an R-
linear category. While some authors (e.g. [11]) further assume linear categories to be
additive and over a field, we do not.

0.3.4 Additive categories

An additive category is a preadditive category with all biproducts. This includes the
empty biproduct = the zero object, so there is a notion of simple object as one with
no nontrivial subobjects. Non-simple objects in additive categories are reducible and
the simple objects are irreducible. An object a in an additive category is decom-
posable if it has a decomposition a = a1 ⊕ a2 for objects a1 and a2. Otherwise a is
indecomposable. Simple implies indecomposable and therefore decomposable implies
reducible. However, there can be reducible indecomposables whose subobject is not a
summand, such as the representation x 7→

(
1 x
0 1

)
of R. Verma modules and quantum

groups at roots of unity give further examples.
An object in an additive category is semisimple if it is a finite sum of simple objects.
An essentially small additive category with semisimple objects is called semisimple.
Note that semisimple ⇒ finite ⇒ Noetherian and Artinian.
The main example of an additive category is the category of projective modules over
a ring. Other examples include the category of finitely generated modules over a non-
Noetherian ring and the category of free modules over a commutative ring.
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0.3.5 Exact categories and their Grothendieck rings

An exact category is an additive category with a class of distinguished short exact
sequences 0→ a

m→ b
e→ c→ 0, containing all split sequences and closed under isomor-

phism. The morphisms in these sequences, admissible monics m and admissible
epis e, must by definition satisfy the following requirements: If b → c is an admis-
sible epi and b′ → c is any morphism, there is an admissible epi from the pullback
b×c b′ → b′. If a→ b is an admissible monic and a→ b′ is any other morphism, there is
an admissible monic to the pushout a→ b+a b

′. If the composition a→ a′ → b is an
admissible epi and a→ a′ has a kernel, then a′ → b is an admissible ep. If b→ c→ c′

is an admissible monic and c→ c′ has a cokernel, then b→ c is an admissible monic.
Every abelian category is exact. The Grothendieck group K0(C) of an essentially
small exact category C is the abelian group generated by the isomorphism classes [a]
of simple objects subject to the relations [b] = [a] + [c] for every exact a → b → c.
For any ring A, the category of finitely generated projective A-modules is exact. Its
Grothendieck group is denoted K0(A).
A functor between exact categories is exact if it is additive and maps exact sequences
to exact sequences. A bifunctor ⊗ : C × C → C is exact if the functors − ⊗ x and
x ⊗ − are exact for every object x ∈ C. Every essentially small monoidal category M
with exact ⊗ has a Grothendieck ring K0(M).
If M is rigid, left and right duals define the same involution on K0(M). If M is pivotal,
the quantum traces induce ring homomorphisms K0(M)→ End(1) that are exchanged
by the involution and which coincide if M is spherical.

0.3.6 Preabelian categories

A preabelian category is an additive category with all kernels and cokernels. Each
morphism f in a preabelian category therefore has a well-defined image im(f) =
ker(coker(f)) and coimage coim(f) = coker(ker(f)), factoring as

a→ coim(f)→ im(f)→ b.

A functor between preabelian categories is left exact if it is additive and preserves
kernels, right exact if it is additive and preserves cokernels and exact if it preserves
both, hence exact sequences.
Examples of preabelian categories include

• The category of Hausdorff topological abelian groups: The image im(f) of a
morphism f : a → b is the inclusion f(a) ↪→ b of the the closure of the range of
a, so that f(a) is dense in im(f).

• The category of filtered modules over a ring A. It is R-linear when A is an
R-algebra.
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0.3.7 Abelian categories

We have seen that kernels are always monic and cokernels are always epic. The converse
statements hold in abelian categories: A monomorphism is normal if it is a kernel and
an epimorphism is normal if it is a cokernel. A preabelian category is abelian if every
monomorphism and epimorphism is normal.
Each object in an abelian category has a composition series consisting of a sequence of
subobjects with simple quotients.
Examples of abelian categories include

• The category of all modules over a ring.

• The category of finitely generated modules over a left-Noetherian ring.

• The category of compact Hausdorff spaces.

• The category of projective modules over a hereditary ring.

The Freyd-Mitchell Theorem states that every abelian category is equivalent to a
full subcategory of some A-mod.
The ring homomorphism Z → Q is epic but not a cokernel, so for example its pres-
ence can keep a preabelian category from being abelian. For instance, this implies
the category Ring is not abelian, but it also not even preadditive because it has no
coproduct.
Nonexamples: The category of Hausdorff topological abelian groups is not abelian
because morphisms with non-closed range are not normal. The category of filtered
A-modules is preabelian but not abelian.

Exercise 0.3.5 Show that an abelian R-linear category is Artinian iff its homsets
are finitely generated R-modules and its objects have finite length, and is finite
iff it is equivalent to the category of finitely generated modules over a finitely
generated R-algebra A.

Given a field k, [11] calls a k-linear abelian category finite if it is equivalent to the
category of finite-dimensional modules over some finite-dimensional k-algebra A. Fi-
nite linear categories depend on A only up to Morita equivalence and are equivalently
characterized as locally finite with finitely many isomorphism classes of simple objects
such that each simple object has a projective cover.
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0.4 Tensor categories

0.4.1 Multiring categories

We follow Sections 4.2-4.3 of [11] and define a multiring category over a commutative
ring R to be an abelian Artinian monoidal category with biadditive and biexact tensor
product.
The unit object 1R of a multiring category R decomposes as a sum

1R '
⊕
i

1Ri

of non-isomorphic indecomposables. A ring category is a multiring category with
indecomposable unit.
The endomorphism ring End(1R) of the unit 1R in a multiring category R is a semisimple
commutative algebra over the base ring. Over an algebraically closed field (the focus
of [11]) this is just a direct product of copies of the field but more generally it will be
a direct product of commutative ring extensions.
The components of the unit decompose R into subcategories

Ri,j = 1Ri
⊗ R⊗ 1Rj

whose indecomposables partition the indecomposables of R and satisfy Ri,j⊗Rj,k → Ri,k.
Each component category Ri,i is a ring category with unit 1Ri

and each Ri,j is a a Ri,i-
Rj,j-bimodule category. This leads to an interpretation as the 2-category with a 0-cell
for each i, a 1-cell from i to j for each object of Ri,j and a 2-cell for each morphism of
R. Physically the 0-cells can represent topological phases, 1-cells domain walls between
phases and 2-cells junctions of domain walls.
The Grothendieck ring K0(R) of a multiring category is an N-ring (i.e. a free Z-module
on the equivalence classes of indecomposables with nonnegative structure constants)
with unit element [1R] = ∑

i[1Ri
]. The structure constants N c

ab determine the fusion
rules

a× b =
∑
c

N c
abc

for each pair a, b of equivalence classes of indecomposables.
The book [11] calls a faithful and exact linear functor F : R → S between multiring
categories a quasi-tensor functor if

F (−)⊗ F (−) ' F (−⊗−)

and F (1R) = 1S. Each quasi-tensor functor F : R → S between multi-ring categories
induces a ring homomorphism K0(R)→ K0(S). A monoidal functor between multiring
categories is a tensor functor. Every tensor functor is quasi-tensor.
If R has left duals then 1R is semisimple with simple components 1Ri

.
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0.4.2 Multitensor categories

A multitensor category is a rigid multiring category, or equivalently, an Artinian
linear abelian rigid monoidal category with bilinear tensor product [11]. Rigidity implies
biexactness of ⊗. A tensor category is a multitensor category with simple unit, or
equivalently, a rigid ring category.
Left and right duals are isomorphic in a semisimple multitensor category over an al-
gebraically closed field ([11] Proposition 4.8.1). So each object a has a well-defined
squared dimension |a|2, which can be computed relative to any isomorphism a → a∗∗

but is independent of the choice. It is however an open question whether such a choice
can always be made naturally, i.e. whether such categories always have a pivotal struc-
ture i.e. commute with ⊗.
The Grothendieck ring K0(T) of a multitensor category is a based ring, i.e. an N-ring
with involution.
Recall that Definition 8.10.1 of [11] defined a twist on a rigid braided category B to be
a natural isomorphism θ ∈ End(idB) satisfing (1). Definition 8.10.1 of [11] further calls
θ a ribbon structure if θa∗ = θ∗a for all a and calls B a ribbon tensor category if
so equipped.

Exercise 0.4.1 Verify that this yields a multitensor category by using the ribbon
structure to recover biexactness of the tensor product.

0.4.3 Multifusion categories

A multifusion category is a semisimple multitensor category with finitely many iso-
morphism classes of simple objects. A fusion category is a semisimple tensor category
with finitely many isomorphism classes of simple objects, i.e. a multifusion category with
a simple unit.
The Grothendieck ring K0(F) of a fusion category F is a finite-rank based ring and is
also known as a fusion ring. There can be only finitely many fusion categories with a
given fusion ring by Ocneanu rigidity.
Let FPdim(a) be the top eigenvalue of the fusion matrix Na ∈ Nn×n, which encodes
the fusion rules via (Na)cb = N c

ab. By the Frobenius-Perron Theorem, the corresponding
eigenspace is spanned by the all 1s vector. The Frobenius-Perron dimension is

FPdim(F) =
√∑

a

FPdim(a)2.

The categorical dimension is defined as

dim(F) =
√∑

a

|a|2.

Then D ≤ FPdim(F) and if equality holds F is called pseudo-unitary.
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In a braided fusion category with a twist θ, the pivotal structure θ ◦ u is spherical iff θ
is a ribbon structure (Proposition 8.10.12).
Each pseudo-unitary fusion category has a canonical spherical structure with Pdim(a) =
FPdim(a) for all objects a ([11] Proposition 9.5.1).
Unitary implies pseudounitary [11].
Bannai observed [13] that fusion rings are essentially the same thing as the association
schemes studied in combinatorics. See Section X.3.

0.4.4 Premodular categories

In a braided fusion category F with a twist, the left/right pivotal traces of the full twist
RbaRab define the S-matrix

Sab = (PTrL⊗PTrR)(RbaRab).

The pivotal structure is spherical iff the twist is ribbon, so spherical braided fusion
categories and ribbon fusion categories are the same thing, also known as a premodular
category. In a premodular category, the fusion matrices Na are normal and mutually
commuting. The S-matrix is symmetric with Si0 and S0i equal to the Pdims, which
equal the FPdims under the pseudo-unitary spherical structure described above.
The Gauss sums ([11] 8.15)

p± =
∑
a

θ±1
a d2

a

of a premodular category satisfy p− = p+ and p+p− = D2, where

D =
√∑

a

d2
a = |p±|

is the total quantum dimension.

0.4.5 Modular categories

A modular category is a premodular category for which S is invertible. Together with
the T -matrix T = diag({θa}) this defines a projective unitary representation

(
0 −1
1 0

)
7→

[S] and
(

1 1
0 1

)
7→ [T ] of the mapping class group SL2(Z). of the torus.
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Rings

I.1 Basic definitions

A ring is a set A with a commutative addition and an associative product, satisfying
the distributive laws and containing 0 and 1 such that (A,+, 0) is an abelian group and
(R \ 0, ·, 1) is a multiplicative monoid. Every ring has 0 6= 1 except the zero ring {0},
the unique ring with one element.
If B is a ring and A ⊂ B is a subset that is also ring, then it is subring if 1A = 1B. A
homomorphism f : A→ B of rings by definition satisfies f(1A) = 1B, in addition to
respecting sums and products. The image f(A) ⊂ B is always a subring, but the kernel
ker(f) ⊂ B is only a subring when B is the zero ring. For each a ∈ A, left and right
multiplication induce homomorphisms a· : A → A and ·a : A → A of the underlying
additive group of A.
The category Ring of rings has products (the Cartesian product) and coproducts (the
free product) but no direct sum. The initial object in Ring is Z and the final object
is the zero ring. A homomorphism is injective iff it is a monomorphism. Surjective
homomorphisms are epimorphisms but there are non-surjective epimorphisms such as
the inclusion Z ↪→ Q.

I.2 Elements

Let A be a ring. An element a ∈ A is a unit if it has an inverse a−1 for which aa−1 = 1
(therefore a−1a = 1.) The unit group

A× = {a ∈ A : ab = ba = 1 for some b ∈ A}

is the multiplicative group of units in A. Each ring homomorphism f : A→ B induces
a homomorphism f : A× → B× of unit groups. If A ⊂ B is a subring, then A× ⊂ B×

is a subgroup. The ring A is a division ring if every nonzero element is a unit, i.e. if
A \ 0 = A×.
An element a ∈ A is left regular if left multiplication by a is injective. Otherwise, a
is a left zero divisor as there exists b ∈ A such that ab = 0. We call a regular if it is
both left regular and right regular, otherwise a zero divisor if it is a left zero divisor
or a right zero divisor. A ring is a domain if every nonzero element is regular, i.e. if 0
is its only zero divisor.
An element a is nilpotent if an = 0 for some n ≥ 1. So nonzero nilpotents, if they
exist, are special kinds of zero divisors. A ring A is reduced if it contains no nonzero
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nilpotents. The above classes of rings, which are characterized by the corresponding
properties of their elements, satisfy the following inclusions:

{division rings} ⊂ {domains} ⊂ {reduced rings}.

The center Z(A) of A is the set of elements that commute with every element in A. It
is a commutative subring satisfying Z(A)× = Z(A×). An algebra over a commutative
ring R, or an R-algebra, consists of a ring A together with a homomorphism R →
Z(A). Note that every ring A is canonically a Z-algebra and a Z(A)-algebra.

I.3 Modules

A module over a ring A is an abelian group M carrying a left action of A, satisfying

a(x+ y) = ax+ ay, (a+ b)x = ax+ bx, (ab)x = a(bx), 1Ax = x.

Equivalently, the left action is given by a homomorphism A → End(M). A right
module over A has a right action satisfying

(x+ y)a = xa+ ya, x(a+ b) = xa+ xb, x(ab) = (xb)a, x1A = x,

or equivalently, that is given by some antihomomorphism A→ End(M). Note that for
right modules, ab acts first via a, then by b, so we can view a right module as a left
module over the opposite ring Aop in which the order of multiplication is reversed.
Given two rings A,B, an A-B-bimodule is simultaneously a left A-module and a right
B-module with mutually commuting actions. We call an A-A-module an A-bimodule
and we call a left module a module.
Homomorphisms between modules are the additive maps f : M → N satisfying
f(am) = af(m) for all a ∈ A, m ∈ M . They form the morphisms in the category
A-mod of A-modules. Similarly, morphisms in the category mod-A of right A-modules
satisfy are the homomorphisms f(ma) = f(m)a, with a similar definition for bimodules.
The full category A-mod of A-modules is additive (abelian in fact). So we call a module
decomposable, indecomposable, simple, semisimple, Noetherian, Artinian, or
finite-length if it is that kind of object in A-mod.
A module M is indecomposable iff End(M) is directly indecomposable (the only
idempotents in End(M) are 0 and 1) iff Spec(End(M)) is connected. A module M is
called strongly indecomposable when End(M) is a local ring.

Lemma I.3.1 (Schur) A module M is simple iff End(M) is a division ring. If M
and N are simple modules, then Hom(M,N) 6= 0 iff M ' N .

A module M is simple iff it is cyclic (M = Am) iff M ' A/I for some maximal right
ideal I of A. A proper submodule N ⊂M is maximal iff M/N is simple.
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simple module ⇒ strongly indecomposable module ⇒ indecomposable module

because

division ring ⇒ directly indecomposable ring ⇒ simple ring.

A module is semisimple if it is a direct sum of simple modules.
A module M is Noetherian if every sequence

· · · ⊂Mi−1 ⊂Mi ⊂ · · ·

of distinct submodules of M has a maximal element (the Ascending Chain Condition
(ACC)), Artinian if every such sequence has a minimal element (the Descending Chain
Condition (DCC)) and of finite length if it satisfies both, i.e. is a finite object in A-
mod. A module has finite length iff it has a composition series, i.e. a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

by distinct submodules satisfying any of the following equivalent conditions:

• Its length n is maximal.

• Each Mi is maximal in Mi+1.

• Each Mi+1/Mi is irreducible.

Theorem I.3.1 (Jordan-Holder) The isomorphism class of M is uniquely de-
termined by the isomorphism classes of the Mi/Mi−1. Furthermore, any other
composition series 0 = M ′

0 ⊂ · · · ⊂ M ′
n′ = M for M must satisfy n = n′ and

M ′
i/M

′
i−1 'Mπ(i)/Mπ(i)−1 for some permutation π ∈ Sn.

Exercise I.3.1 Show that the following conditions on a module M are equivalent
(see [3] for more detail):

• M is semisimple.

• Every submodule of M is a direct summand.

• M is a direct sum of simple modules.

• M is a sum of simple modules.

Exercise I.3.2 Show that the following conditions are equivalent on a semisimple
module:

• It is finitely generated.
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• It is a finite direct sum of irreducible modules.

• It is Noetherian.

• It is Artinian.

• It is finite.

Exercise I.3.3 Show that a module is Noetherian iff every submodule is finitely
generated.

Theorem I.3.2 (Krull-Schmidt) If M is a finite-length module, then M is iso-
morphic to a direct sum of indecomposable modules that is uniquely determined
up to isomorphisms and relabelings.

Using the full abelian category A-mod lets us define further properties of a module. A
module is free if it is isomorphic to a finite direct sum An of copies of A. A module M
is finite if it is finitely generated, i.e. if there exists an exact sequence

An →M → 0.

It is finitely presented if the kernel of that homomorphism is finitely generated, i.e.
if there is an exact sequence

Am → An →M → 0.

A module P is projective if every exact sequence

0→M → N → P → 0

splits, and a module Q is injective if every

0→ Q→M → N → 0

splits. A finite-length module M is stably free (i.e. P ⊕Am ' An for sufficiently large
m and n) iff it is projective.

I.3.1 The radical

The radical rad(M) of a module M is the intersection of all maximal submodules of M .
If M is finitely generated, then maximal submodules exist by Zorn’s lemma, implying
that rad(M) 6= M . However, if M is not finitely generated, M need not contain any
maximal submodules, in which case the empty intersection rad(M) = M is possible.



Chapter I. Rings 29

Exercise I.3.4 Prove that every semisimple module has a trivial radical. Note
that {0} is the only maximal submodule of a simple module.

Exercise I.3.5 Prove that a module is finitely generated and semisimple iff it is
Artinian with trivial radical.

More generally, composition series can be defined for objects in any abelian category.

I.3.2 Properties of rings based on modules

A ring is primitive if it has a faithful simple module and semiprimitive if each nonzero
element acts nontrivially on some simple module. Equivalently, it is semiprimitive if it
has a faithful semisimple module.
A ring is left semihereditary if all submodules of finitely generated modules are pro-
jective, and left hereditary if this holds for all modules. A ring is (semi)hereditary
if it is both left and right (semi)hereditary.

I.4 Ideals

Much can be learned about a ring A by viewing it as a module over itself. Submodules
of A are left ideals, right submodules of A are right ideals and bisubmodules of A
are ideals. Given a ∈ A, write (a) := AaA for the principal ideal generated by a.
If I, J ⊂ A are left ideals, then I ∩ J is the largest left ideal contained in I and J ,
whereas I + J is the smallest left ideal containing I and J . The same holds for right
ideals and for ideals. If I ⊂ A is a left ideal and J ⊂ A is a right ideal, then IJ is an
ideal. Every left ideal of a commutative ring R is an ideal.
The ideals of a ring are analogous to the normal subgroups of a group and satisfy similar
isomorphism theorems:

1. Given a homomorphism f : A → B, its kernel ker(f) ⊂ A is an ideal and
A/ ker(f) ' f(A) ⊂ B is a subring.

2. Given a subring B ⊂ A and an ideal I ⊂ A, B+I ⊂ A is a subring and I ⊂ B+I
is an ideal with (B + I)/I ' B/(B ∩ I).

3. For each ideal I ⊂ A, there is an inclusion-reversing bijection B → B/I from the
subrings I ⊂ B ⊂ A to the subrings of A/I, inducing a bijection J 7→ J/I from
the intermediate ideals I ⊂ J ⊂ A to the ideals of A/I. In particular, B is an
ideal of A iff B/I ⊂ A/I is an ideal.
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I.4.1 Types of ideals

A proper (left) ideal M ⊂ A is a maximal (left) ideal if it is not contained in any
larger proper (left) ideal. A ring A is simple if it containes exactly two ideals: the zero
ideal (0) and A itself. Equivalently, A is simple iff (0) is a maximal ideal. Furthermore,
if A is any ring, an ideal M ⊂ A is maximal iff A/M is a simple ring.
An ideal P ⊂ A is prime if IJ ⊂ P ⇒ I ⊂ P or J ⊂ P holds for all ideals I, J ⊂ A.
It is however sufficient to check the condition only left ideals or right ideals, or even on
principal ideals, where it simplifies to aAb ⊂ P ⇒ a ∈ P or b ∈ P . A ring A is prime
if aAb = 0 implies a = 0 or b = 0; equivalently, A is a prime ring iff (0) is a prime ideal.
Furthermore, P ⊂ A is a prime ideal iff A/P is a division ring.
Call a subset S ⊂ A an m-system if, for every a, b ∈ S, there exists a c ∈ A such that
acb ∈ S, i.e. if S∩aAb 6= ∅. If A is commutative, then an m-system is just a multiplica-
tive set. An ideal P ⊂ A is prime iff A \ P is an m-system iff P is maximal among all
proper ideals disjoint from some m-system S. This implies that every maximal ideal is
prime, though non-maximal prime ideals can exist in general.
An ideal C ⊂ A is completely prime if ab ∈ C ⇒ a ∈ C or b ∈ C. An ideal C is
completely prime iff A/C is a domain.
An ideal Q ⊂ A is semiprime if I2 ⊂ Q implies that I ⊂ Q. As with prime ideals,
it again suffices to check this on one-sided or even principal ideals, where it simplifies
to aAa ⊂ Q ⇒ a ∈ Q. It can be shown that Q is semiprime iff it is an intersection of
prime ideals. Call a subset N ⊂ A nilpotent if Nn = {0} for some n ≥ 1, and a ring
semiprime if it contains no nonzero nilpotent one-sided ideals. Then A is semiprime
iff (0) is a semiprime ideal.

Exercise I.4.1 Show Q is semiprime iff A/Q is reduced.

Question I.4.1 Does reduced also mean trivial nil∗?? Note that trivial nil∗ means
semiprime so this is consistent with reduced ⇒ semiprime.

Call a subset S ⊂ A an n-system if aAa∩S 6= ∅ for every a ∈ A. Then Q is semiprime
iff A \Q is an n-system.
The three classes of rings defined above generalize those defined earlier at the level of
ideals rather than individual elements:

{simple rings} {prime rings} {semiprime rings}

{division rings} {domains} {reduced rings}

⊂

⊃

⊂

⊃ ⊃

⊂ ⊂

In the next section these are further generalized by considering the modules over A, to
primitive and semiprimitive rings, the latter of which encompasses most, if not all of
the rings we consider.
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I.4.2 Primitive ideals

The annihilator
Ann(M) = {a ∈ A : aM = 0}

of an A-module M is an ideal because it is the kernel of the homomorphism A →
EndZ(M) defined by the action of A of M . An ideal is primitive if it is the annihilator
of a simple module.

Exercise I.4.2 Show that primitive ideals are prime.

A ring A is called primitive if it has a faithful simple module.

Exercise I.4.3 ([3] (11.4)) Show that an ideal is primitive iff A/I is primitive.

Similar definitions can be made regarding the right action.

I.4.3 Radicals and nilpotency

Given an ideal I ⊂ A, define its prime radical to be the intersection
√
I =

⋂
{prime ideals P ⊃ I}

of the prime ideals containing I. An ideal Q ⊂ A is therefore semiprime iff
√
Q = Q iff

Q is an intersection of prime ideals. The lower nilradical1

nil∗(A) =
⋂
{prime ideals P ⊂ A} =

√
(0),

is therefore the smallest semiprime ideal.
A subset N ⊂ A is called nil if all its elements are nilpotent. Sums of nil ideals are nil,
so there is a largest nil ideal: the upper nilradical

nil∗(A) =
∑
{nil ideals N ⊂ A}.

Köthe conjectured in 1930 that the sum of two nil left ideals is nil, or equivalently,
that if (0) is the only nil ideal, it is the only nil left ideal. Another formulation of
the conjecture is that nil∗(A) = 0 should imply there are no nonzero nil left ideals.
Surprisingly, the conjecture is still open. The conjecture is true for rings admitting an
involution inducing a nondegenerate norm (i.e. a∗a = 0⇒ a = 0).
A sufficient condition for a (left) ideal N ⊂ A to be nil is that is be nilpotent, meaning
that Nn = (0) for some n. Note that nilpotent ⇒ nil by definition. Sums of nilpotent
ideals can fail to be nilpotent in noncommutative non-Noetherian rings.

1a.k.a. Baer’s radical, Baer-McCoy radical, prime radical
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For any ring A,
nil∗(A) ⊂ nil∗(A) ⊂ rad(A),

where rad(A) is the Jacobson radical

rad(A) =
⋂
{maximal left ideals of A}

= {a ∈ A : 1 + Aa ⊂ A×}
= {a ∈ A : 1 + AaA ⊂ A×}
= {a ∈ A : 1 + aA ⊂ A×}
=

⋂
{maximal right ideals of A}.

Exercise I.4.4 Show that the Jacobson radical rad(A) can also be written as the
intersection of left primitive or right primitive ideals.

A ring A is semiprimitive if it has a faithful semisimple module.

Exercise I.4.5 Show that a ring A is semiprimitive iff rad(A) = 0.

Such rings are therefore also known as semisimple in the sense of Jacobson, J-
semisimple, and in some earlier literature ([1] e.g.) just semisimple.

I.5 Finiteness conditions on rings

A ring is called left/right-Noetherian/Artinian when it is a Noetherian/Artinian
object in its category of left/right modules. A ring is called Noetherian/Artinian if
it is both left and right Noetherian/Artinian. A ring is called semisimple when it is a
semisimple object in its category of left (equivalently right) modules. A ring is called
simple when it is a simple object in its category of bimodules.

I.5.1 Noetherian rings

A ring is left Noetherian if it a Noetherian module over itself, right Noetherian if
it is a Noetherian right module over itself, and Noetherian if it is both left and right
Noetherian.
Exercise. Show that the following conditions on a ring are equivalent:

• It is left Noetherian

• Every left ideal is finitely generated

• Direct sums of injectives are injective
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• Every injective is a sum of injective indecomposables

Example. Show that
(
Z Q
0 Q

)
is right Noetherian but not left Noetherian.

While nilpotent ideals are always nil, Levitzky’s Theorem says that if A is a left
Noetherian ring, then every nil ideal of A is nilpotent and there exists a largest nilpotent
ideal, the nilradical

nil(A) = nil∗(A) = nil∗(A).

Theorem I.5.1 (Hilbert’s Basis Theorem) If A is left Noetherian, then so is the
polynomial ring A[x].

Exercise I.5.1 Show that if A is Noetherian and I ⊂ A is an ideal, then A/I
is Noetherian. Use Hilbert’s Basis Theorem to conclude that finitely generated
algebras over commutative Noetherian rings are Noetherian.

Non-Noetherian rings include polynomial rings Z[x1, x2, . . . ] in infinitely many variables
and the ring A = ∏′

vQv of ideles.

I.5.2 Artinian rings

A ring is left Artinian if it an Artinian module over itself, right Artinian if it is an
Artinian right module over itself, and Artinian if it is both left and right Artinian.

Exercise I.5.2 Show that the following conditions on a ring are equivalent:

• It is left Artinian.

• Every left ideal contains a minimal left ideal.

• Direct sums of projectives are projective.

• Every projective is a sum of projective indecomposables.

Some years after Artin defined Artinian rings, Akizuki-Hopkins-Levitzky proved that
left-Artinian rings are left Noetherian. If A is a left-Artinian ring, then all its radicals
coincide:

nil(A) = nil∗(A) = nil∗(A) = rad(A).

Exercise I.5.3 Use the Jacobson radical to prove the Akizuki-Hopkins-Levitzky
Theorem.

Exercise I.5.4 Show that a simple ring is left Artinian iff it is right Artinian iff
it is isomorphic to Dn×n for some division ring D.
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Exercise I.5.5 Show that Z is Noetherian but not Artinian, whereas Q is both
Artinian and Noetherian.

I.5.3 Semisimple rings

A ring is semisimple if it is semisimple as a left module over itself.

Exercise I.5.6 Show that the following conditions on a ring are equivalent:

• It is semisimple.

• Every module is semisimple.

• Every finitely generated module is semisimple.

• Every cyclic module is semisimple.

• Every short exact sequence of modules splits.

• Every module is projective.

• Every finitely generated module is projective.

• Every cyclic module is projective.

Example I.5.1 The matrix ring C2×2 is simple because it has no nontrivial two-
sided ideals, and semisimple because it is isomorphic over itself to the direct sum
of the minimal left ideals

(
C 0
C 0

)
and

(
0 C
0 C

)
.

The following important structure theorem shows that a ring is semisimple iff its op-
posite is, so there is no need to separately consider left semisimple rings.

Theorem I.5.2 (Artin-Wedderburn) A ring is semisimple iff it is isomorphic to a
finite direct product ∏iD

ni×ni
i of matrices over division rings Di.

Proof. See [3] 3.5. The “if” direction is trivial. As a module over itself, a semisimple ring
by definition decomposes as a direct sum of minimal left ideals, finitely many because
A is Noetherian. These minimal left ideals can be shown to be two sided, proving the
“only if” direction.

Wedderburn first proved this for finite-dimensional semisimple algebras over fields in his
1907 Ph.D. thesis. A key step in his proof showed that a finite-dimensional algebra A is
semisimple iff it has no nontrivial nilpotent ideal iff rad(A) = 0. The proof generalizes
to Artinian rings, for which rad(A) = 0 implies semisimplicity. Confusingly, some
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sources ([1], [14], Wikipedia) call a ring semisimple if its Jacobson radical is trivial,
and thus call our semisimple rings “Artinian semisimple rings.” It is now standard to
call rings with trivial radical semisimple in the sense of Jacobson, J-semisimple or
semiprimitive, in which case semisimple = Artinian J-semisimple.
A commutative simple ring is a field, and a commutative semisimple ring is a finite
direct product of fields.

I.6 Examples

I.6.1 Weyl algebras

If A is an algebra, the Weyl algebra A1(A) = A[X,P ]/(PX −XP − 1) where X and
P are noncommuting “position” and “momentum” variables. The nth Weyl algebra
is defined recursively An(A) = A1(An−1(A)). The Weyl algebra An(A) is not Artinian
because the monomials Xn generate a strictly decreasing infinite sequence of ideals. On
the other hand it is Noetherian/simple/a domain iff A is.
The Weyl algebra A1(R) = R[x1, . . . , xn, ∂1, . . . , ∂n] over a commutative ring A is iso-
morphic to the algebra of derivations of the polynomial algebra R[x1, . . . , xn]. The
Weyl algebra An(k) over a field k of characteristic 0 is a hereditary non-Artinian simple
Noetherian domain [CITATION?].
The Weyl algebra is related to the universal enveloping algebra of the Heisenberg Lie
algebra and the affine Lie algebra û1.
The universal enveloping algebra U(g) of a nontrivial Lie algebra g is non-Artinian,
Noetherian and J-semisimple.
https://math.stackexchange.com/questions/3615836/
semisimple-lie-algebra-and-jacobson-radical

https://math.stackexchange.com/questions/3615836/semisimple-lie-algebra-and-jacobson-radical
https://math.stackexchange.com/questions/3615836/semisimple-lie-algebra-and-jacobson-radical
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I.7 Types of rings

ring simple semisimple J-semisimple left/right
Artinian

left/right
Noetherian

Q yes yes yes yes yes(
−1,−1

R

)
yes yes yes yes yes

Z no no yes no yes
Z[i, j] no no no no yes

An(simple ring) yes no yes no yes
U(gsimple) yes no yes no yes

semiprime
(0) semiprime

nil∗(𝐴) ≔ 0 = 0
𝐵/semiprime ideal

primitive
(∃ faithful simple left module)

(∃ maximal left ideal 
containing no nontrivial ideal)

𝐵/left primitive ideal

prime
(0) prime

(All left ideals are
faithful left modules)

𝐵/prime ideal

semiprimitive
J-semisimple (semisimple in Reiner)
(∃ faithful semisimple left module)

rad 𝐴 = (0)
𝐵/rad(𝐵)

semisimple
semisimple module over self

𝐴 ≃ෑ

𝑖

𝐷𝑛𝑖×𝑛𝑖

simple
(0) maximal ideal

exactly two ideals: 0 , 𝐴
simple bimodule over self

𝐵/maximal ideal

domain
(no zero divisors)

𝐵/completely prime ideal

division ring
(0) maximal left ideal

exactly two left ideals 0 , 𝐴
simple module over self
𝐵/maximal left ideal

reduced
(no nonzero nilpotents)

Artinian

Noetherian

Figure I.1: Types of rings. A = that kind of ring, B = any ring. Colored types coincide
for commutative rings.
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I.8 Graded rings

A ring A is graded by a group G, or G-graded, if its additive group splits as a direct
sum

A =
⊕
g∈G

Ag

such that AgAg′ ⊂ Agg′ .

If A is G-graded and B is H-graded, then A×B is G×H-graded. If H = G, define a
G-grading on A×B such that

(A×B)g =
⊕
xy=g

Ax ×By.

Examples: polynomial ring C[x1, . . . , xn] is Z-graded and Zn-graded. Group ring CG
is G-graded by definition.
Z/2-graded rings and algebras are also known as superalgebras.
Homogeneous ideals and (multi)Proj, noncommutative Proj, noncommutative algebraic
geometry, example: noncommutative line.
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I.9 Local rings

A ring A is a local ring if it satisfies any of the following equivalent conditions ([3]
19.1):

1. A has a unique maximal left ideal

2. A has a unique maximal right ideal

3. the non-units A \ A× form an ideal

4. the non-units A \ A× form an abelian group

5. for every a ∈ A, either a ∈ A× or 1− a ∈ A×

6. a1 + · · ·+ an ∈ A× ⇒ ai ∈ A× for some i.

7. a+ b ∈ A× ⇒ a ∈ A× or b ∈ A×

8. A decomposes as a disjoint union A = A× ∪ rad(A)

9. A/ rad(A) is a division ring

The maximal left ideal and maximal right ideal of a local ring A coincide and are equal
to the Jacobson radical rad(A), which is also the unique maximal ideal of A. Although
a ring with a unique maximal ideal is not necessarily local, the center of such a ring
is a local ring [1]. [3] defines A to be semilocal ([3] §20) if A/ rad(A) is left Artinian
(equivalently, semisimple). Simple/semisimple versus division ring/prime ring?
Other definitions: completeness, DVR, valuations, places, etc. Localizations versus
completions.
A finite-length module M is indecomposable iff End(M) is a local ring. If a general
module M is indecomposable, then End(M) is a local ring.
A commutative ring R is a DVR if it is a PID with a unique prime (or equivaelntly,
maximal) ideal p = Aπ.
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I.9.1 Valuations and completions

An absolute value on a field K is a function | · | : K → R such that |x| = 0 iff x = 0
and

|xy| = |x| · |y|, |x+ y| ≤ max{|x|, |y|} with equality iff x 6= y.

An absolute value is archimedean if it further satisfies |x+y| ≤ |x|+ |y| and otherwise
it is nonarchimedean. Ostrowski’s theorem states that if K is complete with respect
to an archimedean absolute value, then K is isomorphic to either R or C.
More generally, a valuation on a field K is a function v such that v(K×) is a totally
ordered abelian group (the value group) with v(0) extremal. If the value group is
multiplicative, this is essentially the same as an absolute value. If the value group is
additive (such as for a discrete valuation, where v(K×) ' Z), then v(x) = ∞ iff
x = 0 and

v(xy) = v(x) + v(y), v(x+ y) ≥ min{v(x), v(y)} with equality iff x 6= y.

The conditions that an absolute value be normalized are as follows: If v is real,
then |x|v = |ιv(x)|, where ιv : K → R is the corresponding real embedding. If v is
complex, then |x|v = |ιv(x)|2 = ιv(x)ιv(x), where ιv, ιv : K → C are the two embeddings
associated to v, related by complex conjugation. If v is a nonarchimedean absolute value
on a number field corresponding to the finite prime p, then |x|v = NK/Q(p)− ordp(x).
Every x ∈ K× satisfies the product formula ∏

v |x|v = 1, where the product is over
all places and the absolute values are normalized.

I.10 Associative algebras

Let R be a commutative ring. In these notes (and elsewhere), a algebra is a ring A
equipped with a homomorphism R→ Z(A) from a commutative ring R into its center.
We may then write A/R or call A an R-algebra or an algebra over R when the
base ring R needs to be specified. Note that “ring” is synonomous with “Z-algebra.”
Furthermore, every ring A is a Z(A)-algebra. In particular, “algebra” without further
qualifiers = “unital associative algebra.”
Left ideals, right ideals and ideals of an R-algebra A are defined relative to the
underlying ring. In each case, they are R-submodules of A because R maps into the
center of A. Call an algebra simple if its underlying ring is simple and semisimple if
its underlying ring is semisimple. An R-algebra is central if its center is isomorphic to
R. In particular, every ring A is a central Z(A)-algebra.
An R-algebra A is separable if it is a projective module over its enveloping algebra
A⊗RAop. The enveloping algebra acts on A via (∑ ai ⊗ a′i)·x = ∑

aixa
′
i and its product

satisfies (∑ ai ⊗ a′i)(
∑
bj ⊗ b′j) = ∑(aibj)⊗ (b′ja′i). A central separable algebra is called

an Azumaya algebra.
If A/K is a commutative algebra over a field, then A is a field if it is simple, a finite
direct product of fields if it is semisimple, and an étale algebra if it is separable.
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II.1 Commutative rings

Let R be a commutative ring. Then all ideals are two sided and many of the classes of
noncommutative rings collected in Figure I.7 coincide:

• field = division ring = simple = primitive

• integral domain = prime

• reduced = semiprime = semiprimitive = J-semisimple.

The corresponding statements about ideals are

• A proper subset m ⊂ R is a maximal ideal iff it is a maximal left ideal.

• A proper ideal p ⊂ R is prime iff it is completely prime iff xy ∈ p ⇒ x ∈ p or
y ∈ p.

• There is a largest nilpotent ideal, or nilradical

nil(R) = nil∗(R) = nil∗(R) = rad(R).

II.2 Sheaves

A precosheaf is a functor F : C → Set. A presheaf on a category C is a functor
F : Cop → Set.

II.2.1 Topological spaces

The open sets Open(X) of a topological space X are closed under union and finite
intersection, where by convention the empty intersection is X. A subset B′ ⊂ Open(X)
is a subbase if it generates the topology, i.e. is the smallest topology containing B′.
Equivalently B′ is a subbase if every open set is a union of finite intersections of sets
in B′. A subset B ⊂ Open(X) is a base if every open set is a union of sets in B.
Equivalently, B is a base if finite intersections of sets in B are unions of sets in B. In
particular, B′ is a subbase iff its closure under all finite intersections is a base.

40
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Exercise II.2.1 A map f : X → Y between topological spaces is an open
mapping if it restricts to a functor Open(X) → Open(Y ) and continuous if
f−1 restricts to a functor f−1 : Open(Y )op → Open(X).

A subset U of a topological space X is reducible if U = U1 ∪ U2 for closed proper
subsets Ui ⊂ U and is otherwise irreducible. The irreducible components of a
space are its maximal irreducible subsets.
A neighborhood of a point is a set containing an open set containing that point. Two
points are topologically distinguishable if they have a pair of distinct neighborhoods
and furthermore separated if each has a neighborhood not containing the other.
A space is

• T0, or Kolmogorov, if every two distinct points are topologically distinguishable.

• R0, or a symmetric space, if every two topologically distinguishable points are
separated.

• T1 if every two points are separated. Such spaces are also called separated,
accessible or Fréchet. Definition chasing shows a space is T1 iff it is T0 and R0
iff all singletons (equivalently, finite subsets) are closed.

• T2, or Hausdorff , if every two points have a pair of disjoint neighborhoods.

A topological space is T2, or Hausdorff , if any two points have disjoint neighborhoods.
Smooth manifolds and in particular Euclidean spaces are T2 so this condition is famil-
iar. The irreducible components (and therefore the irreducible sets) of a T2 space are
singletons.

Exercise II.2.2 Let X = {x, y}. There are three possibilities up to isomorphism:

• Suppose the only open sets are X and φ. Show that X is R0 but not T0.

• Suppose that {x} is open but {y} is not. Show that X is T0 but not R0.

• Suppose both {x} and {y} are open. Show that X is T2 (therefore T1)

II.2.2 Presheaves on a topological space

A presheaf on a topological space X is a functor Open(X)op → Set. In other words,
it is a map U 7→ F(U) from open sets to sets together with restriction maps resU,V :
F(U) → F(V ) to each open V ⊂ U such that resU,U is the identity and such that for
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every W ⊂ V ⊂ U , the following diagram commutes:

F(U) F(W )

F(V ).
resU,V

resU,W

resV,W

The stalk of F at x is the set Fx of equivalence classes of pairs (U, s) with U open
and s ∈ F(U) for the equivalence relation (U, s) ∼ (V, t) iff s|W = t|W for some open
W ⊂ U ∩ V . Equivalently, the stalk at x is the direct limit = filtered colimit

Fx = lim
−→
U3p

F(U).

The morphisms φ : F → G in the category PShv(X) of presheaves on X are the
natural transformations between the corresponding contravariant functors to Set. Such
a morphism is explicitly given by a collection φ(U) : F(U) → G(U) of maps that is
compatible with restriction in the sense that

F(U) G(U)

F(V ) F(V )

φ(U)

resU,V resU,V

φ(V )

for open U ⊃ V .

II.2.3 Continuous maps of presheaves

https://stacks.math.columbia.edu/tag/008C

A continuous map f : X → Y determines a pushforward functor

f∗ : PShv(X)→ PShv(Y )

via (f∗F)(V ) = F(f−1(U)). Pushforwards take stalks to stalks, i.e. there is a natural
morphism (f∗F)f(x) → Fx. The map f∗ is a morphism from presheaves on X to
presheaves on Y .
The pullback functor

f ∗ : PShv(Y )→ PShv(X)
(Stacks writes this fp) is the left adjoint of the pushforward and is the unique functor
such that (f ∗G)(U) is the inverse limit of G(V ) over all open U, V with f(U) ⊂ V .

II.2.4 Sheaves on topological spaces

A sheaf is a presheaf F for which every open cover {Ui} of X satisfies the following
conditions:

https://stacks.math.columbia.edu/tag/008C
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• (Equality) If s, t ∈ F(X) satisfy s|Ui
= t|Ui

for all i, then s = t.

• (Gluing) If there exist local sections si ∈ F(Ui) that agree on the overlaps
si|Ui∩Uj

= sj|Ui∩Uj
for all i, j, then there exists a global section s ∈ F(X) with

s|Ui
= si.

Morphisms of sheaves are morphisms of their underlying presheaves, so there is an
inclusion functor

ι : Shv(X)→ PShv(X).

The left adjoint to ι exists and is called sheafification

] : PShv(X)→ Shv(X)

with F ](U) containing the (su) ∈
⋃
u∈U Fu such that each u has an open neighborhood

u ⊂ V ⊂ U on which there exists a section s ∈ F(V ) such that su ∼ (V, s). By
definition of the adjoint,

HomPShv(X)(F , ι(G)) ' HomShv(X)(F ],G).

Let f : X → Y be a continuous map. If F is a sheaf on X, then its pushforward f∗F
is a sheaf on Y , so the pushforward of presheaves restricts to a functor

f∗ : Shv(X)→ Shv(Y )

on sheaves. However, if G is a sheaf on Y , its pullback f ∗G might only be a presheaf
X. The inverse image sheaf f−1G = (f ∗G)] ∈ Shv(X) is the sheafification of the
pullback presheaf and is sometimes called the “pullback sheaf” (e.g. in Stacks) but this
can mean other things too. Therefore

·−1 : Shv(Y )→ Shv(X)

as required. The adjoint pairs (ι, f−1) and (f∗, f ∗) give functorial (in F and G) bijections

HomShv(X)(f−1G,F) ' HomPShv(X)(f ∗G,F) ' HomPShv(Y )(G, f∗F) ' HomShv(Y )(G, f∗F).

There are also bijections with the set of f-maps ξ : G → F [Stacks Definition 6.21.7]
and also with the set of HomY X(G,F) of compatible collections φV U : G(V ) → F(U)
of morphisms over open sets U ⊂ X, π(U) ⊂ V ⊂ Y such that

G(V ) F(U)

G(V ′) F(U ′)

φV U

resV,V ′ resU,U′

φV ′U′

commutes whenever U ′ ⊂ U and f(U ′) ⊂ V ′ ⊂ V . See [[15] 2.7B], [Stacks Lemma
6.21.8].

https://stacks.math.columbia.edu/tag/007X
https://stacks.math.columbia.edu/tag/008C
https://stacks.math.columbia.edu/tag/008J
https://stacks.math.columbia.edu/tag/008K
https://stacks.math.columbia.edu/tag/008K
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II.2.5 Ringed spaces

A ringed space (X,OX) is a topological space X equipped with a sheaf of commutative
rings, the structure sheaf OX . OX-modules M are themselves sheaves on X, i.e.
M(U) is an OX(U)-module for open U ⊂ X.
A morphism of ringed spaces consists of a continuous map f : X → Y of the underlying
topological spaces together with an f -map ξ : OY → OX , or equivalently, a map
f−1OY → OX in Shv(Y ) or a map f ] : OY → f∗OX in Shv(X) (as on p. 72 of [16]).
See Section II.2.4 of these notes, or .

II.2.6 Locally ringed spaces

A locally ringed space is a ringed space (X,OX) whose stalks OX,x are local rings.
We write mx ⊂ OX,x for the maximal ideal and κ(x) = OX,x/mx for the residue field
at x. For example, a smooth manifold equipped with its sheaf of smooth functions is a
locally ringed space. Our main examples will be Spec(R) below.
A morphism f : (X,OX) → (Y,OY ) of locally ringed spaces is a morphism of ringed
spaces inducing a morphism f ] : OY,f(x) → OX,x of local rings on each stalk, by defini-
tion taking the maximal ideal mf(x) of OY,f(x) to the maximal ideal mx of OX,x.

II.3 Spec(R)

The prime spectrum of R is the set Spec(R) of prime ideals of R equipped with the
Zariski topology. The closed sets

V (I) = {p ∈ Spec(R) : I ⊂ p}

are determined by the ideals I ⊂ R and satisfy

V (I + J) = V (I) ∩ V (J), V (I ∩ J) = V (IJ) = V (I) ∪ V (J).

The corresponding open sets

D(I) = {p ∈ Spec(A) : I 6⊂ p}

satisfy
D(I + J) = D(I) ∪D(J), D(I ∩ J) = D(IJ) = D(I) ∩D(J).

Furthermore, I|J iff J ⊂ I, in which case V (I) ⊂ V (J) and D(J) ⊂ D(I). The
distinguished open sets

D(f) = {p ∈ Spec(R) : f /∈ p}

for f ∈ R therefore form a base for the Zariski topology, so that every Zariski open is
a union of distinguished opens.
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Exercise II.3.1 Show that the closed points of Spec(R) are precisely the maximal
ideals of R.

Exercise II.3.2 Show the Zariski topology is always quasicompact (i.e. every
open cover has a finite subcover) and T1 but is typically non-Hausdorff, and thus
typically not compact (because compact iff it is quasicompact and Hausdorff by
Heine-Borel).

Exercise II.3.3 Show the Zariski topology is the coarsest T1 topology on Spec(R).

II.3.1 Localization

A localization of a commutative ring R by a subset S ⊂ R is an R-algebra isomorphic
to R[S−1]. The subset is called multiplicatively closed if S is multiplicative monoid,
in which case R[S−1] = S−1R. In general we have R[S−1] = 〈S〉−1R, where 〈S〉 is the
monoid generated by the elements of S. Examples include localization R[f−1] by a
principal ideal (f) = Rf and localization Rp = (R \ p)−1R at a prime ideal p. Modules
can be localized via the tensor product S−1M = M ⊗R (S−1R). Furthermore,

Spec(S−1R) ' {p : p ∩ S = ∅} ⊂ Spec(R).

II.3.2 Spec(R) as a locally ringed space

There is a canonical sheaf OSpec(R) of rings on Spec(R) such that

OSpec(R)(D(f)) ' R[f−1] =
⋂
f /∈p

Rp

for each nonzero f ∈ R. The stalks are local rings

OSpec(R)(p) = Rp = (S \ p)−1R

so (Spec(R),OSpec(R)) is a locally ringed space. Furthermore,

OSpec(R)(U) =
⋂
p∈U
OSpec(R)(p).

The inclusion map R→ R[f−1] is dual to the inclusion

Spec(R[f−1]) ↪→ Spec(R)

with image D(f) and the quotient map R→ R/I is dual to the open mapping

Spec(R/I)→ Spec(R)

with image V (I). These are our first examples of finite morphisms.
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II.3.3 Commutative Noetherian rings

An ideal Q of R is primary if xy ∈ Q implies either x ∈ Q, y ∈ Q or x, y ∈
√
Q. An

ideal Q is primary iff every zero divisor in R/Q is nilpotent.
Lasker-Noether Theorem. Every ideal of a commutative Noetherian ring has an
irredundant primary decomposition

Q1 ∩ · · · ∩Qm

with distinct uniquely determined prime radicals
√
Qi though the primary ideals Qi

can in general be different.
Examples from [17].

II.3.4 Integral domains

An integral domain is a commutative ring R with no zero divisors, i.e. a commutative
domain. A commutative ring R is an integral domain iff (0) ∈ Spec(R) i.e. (0) is a prime
ideal. In such a case, the localization R(0) is the fraction field Frac(R). Localizations
of integral domains are integral domains.
An ideal I ⊂ R is prime iff R/I is an integral domain and maximal iff R/I is a field.
Because fields are integral domains, every maximal ideal is prime, but there can be
non-maximal prime ideals in general. Example: Every prime of the Dedekind domain
Z[1+

√
5

2 ] is maximal but the a non-integrally closed Noetherian domain like Z[
√

5] can
have non-maximal prime ideals (in this case, there is a prime strictly dividing 2).
Examples of integral domains and their fraction fields include

Z ⊂ Q, Z
[ 1
n

]
⊂ Q, Z(n) ⊂ Q, Zp ⊂ Qp.

II.4 Schemes

II.4.1 Categories of schemes

An affine scheme is a locally ringed space isomorphic to some Spec(R). An affine
scheme X is reduced if OX is reduced, irreducible if its underlying topological space
is, and integral if OX is an integral domain.
A scheme is a locally ringed space covered by affine schemes. A scheme is reduced,
irreducible or integral if that property holds on all its affine opens. Reduced and
integral can also be checked at the level of local rings. A morphism X → Y of schemes
is a morphism of the underlying locally ringed spaces.
A scheme X equipped with a structure morphism X → Z to a base scheme Z
(written X/Z) is called a Z-scheme, a scheme over Z, or a scheme defined over Z.
If furthermore Z = Spec(R) is affine we may say that X is defined over R.
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A morphism of schemes over Z is a morphism f : X → Y that commutes with the
structure maps, sometimes written f : X/Z → Y/Z. The cartesian, or fiber product
X ×Z Y in the resulting category SchZ of Z-schemes exists and satisfies the usual
universal properties for products.

II.4.2 Separated morphisms and varieties

A morphism f : X → Y is a closed immersion if f ] : OY → f∗OX is surjective. A
morphism f : X → Z is separated if the diagonal morphism δ : X → X ×Z X is a
closed immersion, i.e. δ] : OX×ZX → f∗OX is surjective. In such a case, the relative
scheme X/Z is also said to be separated.

Exercise II.4.1 Let I ⊂ R is an ideal. Show that the inclusion Spec(R/I) →
Spec(R) defined by the quotient map R→ R/I is a closed immersion.

A variety usually at least means a reduced, separated scheme of finite type over a
field. Many authors further require irreducibility (hence integrality) and/or algebraic
closedness of the base field.

II.4.3 Affine algebras

If S is an R-algebra, the defining morphism R → S determines a structure morphism
Spec(S) → Spec(R) of affine schemes, defining Spec(S) over R (i.e. as a relative
scheme over Spec(R)). If S is finitely generated over R, then Spec(S) is of finite
type (or just finite) over R.
If S is reduced and finite over R, then Spec(S) is an affine algebraic set that is
irreducible iff S is furthermore an integral domain. Typically an affine algebraic
variety refers to an irreducible affine algebraic set over an algebraically closed field
though this terminology is not universal with some authors dropping the irreducibility
and the base field condition.
There is an equivalence of categories between the category of finite reduced R-algebras
and homomorphisms and the category of affine algebraic sets and finite morphisms.
The image of an affine algebraic set in affine space Am

R = Spec(R[x1, . . . , xm]) over R
is Spec(R[x1, . . . , xm]/I) for some radical ideal I =

√
I that is prime for a variety.

For a field K, Spec(K) consists of the single point (0) so its sheaf is given by the stalk
O(0) = K.
Nullstellensatz

√
J = I(V (J)) characterizes the closed sets in the Zariski topology.

Noether normalization.
The functor of points takes each commutative R-algebra S to the set Spec(S)(T )
of T -valued points Spec(T ) → Spec(S), which are represented by R-algebra homo-
morphisms S → T . If k is a field and K/k is an extension, the K-valued points are
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k-algebra homomorphisms S → K. If the extension K/k is normal and separable,
the Gal(K/k)-orbits of the K-valued points are in natural bijection with the maximal
points of Spec(S).
Spec(Z) consists of a closed point (p) for each finite prime p together with the nonmax-
imal prime (0) with (0) = Spec(Z).

II.4.4 Dimension and rank

The Krull dimension of a commutative ring R is the dimension of Spec(R) as a
topological space. It is equal to the length of the longest chain of prime ideals, measured
by the number of inclusions. For example, Q(

√
−3) has dimension 0 (as do all fields),

Z, Z
[√
−3
]

and C[x] have dimension 1, whereas C[x, y] and Z[x] have dimension 2.
The rank of a finitely generated projective module M over a commutative ring R is
the following locally constant function on Spec(R):

p 7→ rankp(M) = rankR/p(M ⊗R R/p).

It is well-defined because M ⊗R R/p is free over the local ring R/p. When Spec(R) is
connected, R is an integral domain and 1 is the only nontrivial idempotent. If F is the
quotient field of R, then

rank(M) = dimF (F⊗RM) = maximum number of linearly independent elements in M.

II.4.5 Dedekind domains

An integral domain R that is not a field is a Dedekind domain if it satisfies any of
the following equivalent conditions:

• Every nonzero proper ideal of R uniquely factors into prime ideals.

• Every nonzero fractional ideal of R is invertible.

• R is Noetherian and its localization Rm at each maximal ideal m is a DVR.

• R is 1-dimensional (so every prime ideal is maximal), Noetherian and integrally
closed.

• Every submodule of every projective R-module is projective.

The orders of a number field K are standard examples of one-dimensional Noetherian
domains and, among these, only the maximal order (i.e. the ring of integers) is integrally
closed, hence a Dedekind domain.
The class of Dedekind domains is closed under localization: If R is a Dedekind domain
and S ⊂ R is multiplicatively closed, then the localization S−1R is also a Dedekind
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domain that is not R-integral. So for example, Z, Z[ 1
p
] and Z(p) = {a

b
∈ Q : p - b}

are all Dedekind domains. Dedekind domains are also closed under extension: If R is
a Dedekind domain with quotient field F , and if E/F is any extension field, then the
integral closure of R in E is a Dedekind domain with quotient field E. For example,
the p-adic integers Zp are the integral closure of Z(p) (in fact, also of Z) in the p-adic
numbers Qp/Q, hence a Dedekind domain.

Exercise II.4.2 What goes wrong for Z[
√
−3]?

II.4.6 Modules over commutative rings

In this section we consider only modules over a commutative ring R. A module is flat
if it preserves exact sequences under tensor products, and faithfully flat when the
tensor product with a sequence is exact iff the original sequence is exact. A module
M is torsion free if the annihilator of any nonzero element of M contains only zero
divisors, i.e. if rm = 0 implies that m is a zero divisor. Over a domain, torsion free ⇒
faithful since the condition becomes rm = 0 implies m = 0.
We have the general implications

free⇒ projective⇒ flat⇒ torsion-free.

It is worth mentioning that the proof of free ⇒ projective uses the axiom of choice
whereas one can prove free ⇒ flat without it.
For modules over a PID, projective ⇒ free.
Let M be a finitely generated module over a commutative ring R. Then M is a
If R is a local ring, then M is flat ⇒ M is free.
For finitely generated modules over Dedekind domain, torsion-free ⇒ projective.
For finitely generated modules over a PID, torsion-free ⇒ free.
For finitely generated modules over an integrally closed Noetherian domain, flat ⇒
projective.
Quasicoherent sheaves, locally free and coherent sheaves on Spec(R) are R-modules,
projective R-modules and finitely presented R-modules.

II.5 Projective schemes

In this section, graded means Z-graded unless stated otherwise.
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II.5.1 Proj(R)

A homogeneous ideal I of a graded ring R is irrelevant if its radical
√
I contains the

irrelevant ideal R+. Let Proj(R) be the set of relevant homogeneous prime ideals of
R, i.e. the homogeneous prime ideals that are strictly contained in S+. The relevant
homogeneous ideals I determine the Zariski-closed

V (I) = {p ∈ Proj(R) : p ⊃ I}

and Zariski-open

D(I) = Proj(R) \ V (I) = {p ∈ Proj(R) : p ⊃ I}

subsets. The homogenous f ∈ R+ define the distinguished closed

V (f) = V ((f)) = {p ∈ Proj(R) : p 3 f}

and distinguished open

D(f) := Proj(R) \ V (f) = {p ∈ Proj(R) : p 63 f}

subsets.

II.5.2 On homogeneous ideals

We record here some useful facts about graded rings and their homogeneous ideals
following [18]. Let R be a graded ring. Then R0 is a ring and R is an R0-algebra.
If S is a multiplicative subset of R, let I(S) be the set of homogeneous ideals I with
I ∩ S = ∅. Then the maximal ideals of I(S) are prime, and every ideal of I(S) is
contained in a prime of I(S). If R a domain, then only homogeneous elements can
divide homogeneous elements.
A homogeneous subset of R+ generates R as an R0-module iff it generates R+ as an R-
module. The ideal R+ ⊂ R is finitely generated iff R is a finitely generated R0-algebra.
R is Noetherian iff R0 is Noetherian and R is a finitely generated R0-algebra. Let R(d)

be the graded ring with R(d)
n = Rnd. If it is generated by R1 as an R0-algebra, then so

is every R(d) by R
(d)
1 = Rd (similarly for “finitely generated by”). If R is Noetherian,

then so is R(d). If R is a finitely generated R0-algebra, then so is R(d) for some d.
For a homogeneous ideal a ⊂ R and p ∈ Proj(R), then a ⊂ p iff an ⊂ pn for all
sufficiently large n.
Let pn ⊂ Rn for all n ≥ N be subgroups satisfying the following conditions: pn 6= Sn
for some n ≥ d. Rmpn ⊂ pn+m for all m ≥ 0, n ≥ N . For all m ≥ 0, f ∈ Rn and
g ∈ Rn′ with n, n′ ≥ N , fg ∈ pn+n′ ⇒ f ∈ pn or g ∈ pn′ . Then it completes to a unique
p ∈ Proj(R).
If f ∈ Rd, then R(f) and R(d)/(f − 1) canonically isomorphic.
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II.5.3 Proj(R) as a scheme

For each homogeneous f ∈ R+, there is an isomorphism D(f)→ Spec(R[f−1]0) taking
p ∈ D(f) to (R[f−1]p)0 and q ∈ Spec(R[f−1]0) to q ∩ R, as can be verified by showing
bijections with the homogeneous primes of R[f−1]. The distinguished opens form a
base for the Zariski topology (every open is a union of D(f)), so that for every open
U ⊂ Proj(R), there is a set {fi} of homogeneous elements such that

O(U) ' S[{f−1
i }]0 = R

[∏
i

f−1
i

]
0
,

with the last holding if e.g. R is Noetherian, in which case the ideal of U must be
finitely generated. A set of basic opens D(fi) cover Proj(R) iff the radical of the ideal
generated by the fi is R+ (Eisenbud Exercise III-10).
The structure sheaf has stalks

Op := lim
U3p
O(U) ' Rp = R[(R\p)−1]0 = {g/f : g, f homog. of same degree, f /∈ p} =

⋂
f /∈p

R[f−1]0

The closed points of Proj(R) are the maximal ideals among those in Proj(R); equiva-
lently, they are the maximal homogeneous ideals of S among those strictly contained
in R+. Note that points of Proj(R) are never maximal ideals of R, because they are all
contained in R+. The Proj construction remedies this by ignoring the irrelevant ideal,
but this means that R/p is an integral domain but not a field for each p ∈ Proj(R).
If f ∈ S1, then R[f−1]−n = S[f−1]0/fn for n ≥ 0. If p ∈ Proj(R) and f /∈ p, the prime
ideal (R[f−1]p)0 of R[f−1]0 has the form

(R[f−1]p)0 = S[f−1]0p0 +R[f−1]−1p1 + · · · = R[f−1]0(p0 + p1/f + p2/f
2 + · · · ).

A similar formula exists for f ∈ Rm. In either case, the ideal (R[f−1]p)0 is maximal
iff p is a closed point, in which case the residue field k(p) = R[f−1]0/(R[f−1]p)0 is
independent, up to isomophism, of the choice of f /∈ p.
If F/k is a field extension, the set of F -valued points of Proj(R), or of F -points, is
defined to be

Proj(S)(F ) := Hom(Spec(F ),Proj(S)).

A morphism Spec(F ) → Proj(R) determines a morphism OProj(R) → π∗OSpec(F ) of
sheaves over Proj(S), which by adjointness, is equivalent to a morphism π−1OProj(R) →
OSpec(F )of sheaves over the 1-point space Spec(F ). Hence, to give an F -point is to give
a closed point p and a k-algebra homomorphism R[f−1]0 → F for every f /∈ p. Because
the kernel of this homomorphism is the maximal ideal (R[f−1]0p) (why?), F -valued
points are also equivalent to a choice of closed point p together with an embedding
k(p)→ F .
The residue field k(p) is a finite extension of k iff p is a closed point iff the de-
gree [k(p) : k] is finite. The closed points are in 1-1 correspondence with the space
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Proj(R)(k̄)/Gal(k̄/k) of Galois orbits of k̄-points. There is a 1-1 correspondence be-
tween F -points and closed points equipped with embeddings k(p)→ F of their residue
fields.
[[15] Exercise 4.5.I]: For a homogeneous ideal I ⊂ R, V (I) = ∅ iff S+ ⊂

√
I iff for a set

of generators fi of I, ∪iD(fi) = Proj(R). So to show that V (I) 6= ∅ for I = RHG
2 , it is

enough to show that R+ 6⊂
√
I, i.e. to show that fn ∈ RHG

2 ⇒ f0 6= 0.
If I ⊂ R is a relevant homogeneous ideal, its saturation is the ideal

Isat = {f ∈ R : fRn ⊂ I for some n} =
⋃
n

(I : Sn+),

where (I : J) = {f ∈ R : fJ ⊂ I} is the ideal quotient. There is a 1-1 correspondence
between saturated ideals of R and projective subschemes of Proj(R). Note that the
radical of an ideal I ⊂ R is the ideal

√
I = {f ∈ R : fn ∈ I for some n} =

⋂
p⊃I

p,

and that the intersection can be restricted to homogeneous primes if I is homogeneous.



Chapter III
Quadratic forms

We discuss involutions, sesquilinear forms, tensor products, bimodules and Morita
equivalence, following [5], [19].

III.1 The dual module

Let M be a module over a ring A. The dual module M∨ = Hom(M,A) is the right
module with action (ϕa)(x) = ϕ(ax). This construction extends to a duality functor,
i.e an anti-equivalence

∨ : A−mod→ mod−A

of categories taking f to its transpose f∨ : N∨ → M∨, which maps each ϕ ∈
Hom(N,A) to its pullback f∨(ϕ) = ϕ ◦ f along f in the diagram

M N

A.
f∨(ϕ)

f

ϕ

III.2 Involutions

An involution ι : A → A on a ring A is an anti-automorphism squaring to the
identity. Composing with the natural anti-isomorphism Aop → A gives a bijection
between the involutions on A and the isomorphisms A→ Aop. Each involution defines
a corresponding norm N(a) = aι(a) and a trace Tr(a) = a+ ι(a).
Let (A, ι) be a ring with involution. If A is noncommutative, then ι must be nontrivial.
It a nontrivial fact that a given ring admits an involution at all. Involutions relate left
and right modules while underlying the definitions of affine algebraic groups.
Let R be a commutative subring of A. Viewed as an R-algebra, an involution on A is of
the first kind if it acts trivially on R and is otherwise of the second kind, restricting
to a nontrivial automorphism of R.

III.3 The opposite module and its dual

Given an A-module, we may use the involution to define the opposite module M , a
right module with same underlying abelian group but with right action ma = ι(a)m.
This construction extends to an equivalence of categories A−mod → mod−A taking

53
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f : M → N to the morphism f : M → N with f(m) = f(m). With similar definitions
for right modules, the functors ·∨ and − commute up natural isomorphism (see [5]
Lemma 2.1.1). Their composition is a duality functor ∗ : A−mod→ A−mod such that
M∗ := M∨ via (af)(x) = f(xā), mapping f : M → N to its transpose f ∗ = f∨ : N∗ →
M∗, which takes ϕ ∈ N∗ to ϕ ◦ f ∈M∗. There are natural isomorphisms −∨ ' −∨ and
∗∗ ' idA−mod [19].

III.4 Sesquilinear forms

Here we recall some general background [5], [19] enabling the realization of quadratic
forms as classes of bilinear forms modulo alternating ones that works in any character-
istic, most notably 2.
Let A/R be an involuted algebra and let M be a right A-module. A bi-additive map
b : M ×M → A is a sesquilinear form if b(xa, ya′) = ab(x, y)a′ for every x, y ∈ M
and every a, a′ ∈ A. Each sesquilinear form b ∈ Sesq(M) defines a unique adjoint
morphism hb ∈ HomA(M,M∗) such that hb(x)(y) = b(x, y) for all x, y ∈ M , inducing
the R-module isomorphisms

Sesq(M) ' HomA(M,M∗) 'M ⊗AM.

Call a sesquilinear form b regular, nonsingular, or nondegenerate if its adjoint
hb ∈ HomA(M,M∗) is an isomorphism. When b is regular, the adjoint involution
f 7→ f b := h−1

b f ∗hb on EndA(M) is the unique involution such that b(x, fy) = b(f bx, y)
for every x, y ∈M .
Let b(x, y) = b(y, x). For ε ∈ U1(Z(A)) := {ε ∈ Z(A) : εε = 1} ⊂ A×, define
Sε : Sesq(M)→ Sesq(M) by

Sε(b) = b+ εb

and similarly define Sε : HomA(M,M∗)→ HomA(M,M∗). Let
Sesqε(M) = kerS−ε = {b ∈ Sesq(M) : b = εb}

be the R-submodule of ε-hermitian forms on M . 1-hermitian forms are hermitian
and −1-hermitian forms are antihermitian.
Let

Sesqε(M) = imSε = {Sε(b) : b ∈ Sesq(M)} ⊂ Sesqε(M)
be the submodule of even ε-hermitian forms. There is an exact sequence

0→ Sesq−ε(M)−→Sesq(M) Sε−→ Sesqε(M)→ 0.

III.5 Form rings

We now consider consider the following modules of −ε-hermitian forms on A

Λmin = imS−ε = {a− εa}, Λmax = kerSε = {a : a = −εa}.
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They are equal when 2 ∈ A× but can generally be different. Each intermediate sub-
module Λmin ⊂ Λ ⊂ Λmax satisfying aΛa ⊂ Λ determines a form ring [10], [19], or
unitary ring [6], (A, ε,Λ) with form parameter (ε,Λ).
An ε-hermitian form b on a finitely generated projective right A-module M determines
an ε-hermitian module (M, b). [19] calls a pair (M,B) with B ∈ Sesq(M) a Λ-
quadratic module and the map qB : M → A/Λ taking m to B(m,m) + Λ a Λ-
quadratic form.
A function φ : M → N between right A-modules is a quadratic map if

φ(x, y) := φ(x+ y)− φ(x)− φ(y) + φ(0)

is biadditive. It homogeneous if it is pointed (φ(0) = 0) and even (φ(−x) = φ(x)),
or equivalently if φ(nx) = n2φ(x) for every n ∈ Z. A quadratic form is a homogeneous
quadratic map. A quadratic space is a vector space equipped with a quadratic form.
The book [10] studies codes over a right A-module M as submodules of the product
module Mn via an explicit description of form rings as involuted rings that are iso-
morphic to “twisted modules” over themselves. For this, they first define a twisted
A-module as a right (A × A)-module M equipped with an automorphism τ satisfy-
ing τ(m(r ⊗ s)) = τ(m)(s ⊗ r). Then a twisted ring is a ring A together with a
twisted A-module M and a right A-module isomorphism ψ : AA → M1⊗A such that
ε := ψ−1(τ(ψ(1))) ∈ A×. Let an A-qmodule refer to a Z-module Φ together with
a pointed quadratic map [·] : A → End(Φ) such that [1] = 1 and [rs] = [r][s]. Now
we can equivalently define [10] a form ring (A,M,ψ,Φ) as a twisted ring (A,M,ψ)
equipped with an A-qmodule isomophism M → Φ. The book [10] calls the pair M , Φ
of isomorphic A-qmodules a “quadratic pair” but this means something else in [2].

Exercise III.5.1 Show that a twisted ring (A,M,ψ) is the same as a ring with
involution induced by τ and ψ, in which case M is an A-qmodule for the diagonal
action m[r] = m(r ⊗ r). (see [10] Sect. 1.4).

III.6 Determinant and discriminant of hermitian forms

Let h : M ×M → R be a nondegenerate hermitian form on a module M over a commu-
tative ring R with involution ι. If M is a free module of rank r, define the determinant
of h to be the determinant of the Gram matrix of any basis e1, . . . , er modulo norms

det(h) = det(h(ei, ej)ij) N(R×) ∈ R×/N(R×),

where N(x) = xι(x) is the norm induced by the involution ι. The discriminant of h is
the class of the signed determinant or “signed determinant” ([6] Definition 2.1, [20] [2])

disc(h) = (−1)(r2−r)/2 det(h) ∈ R×/N(R×). (III.1)
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When the involution ι is trivial, note that N(R×) = (R×)2 and the discriminant is
defined modulo squares of the base ring.
If M is an R-module of constant rank r, define disc(h) to be the ideal of R generated
by the determinants det(h(ei, ej)ij) of the Gram matrices of all linear independent
subsets {e1, . . . , er} ⊂M . If R is an integral domain, this is the ideal generated by the
determinants of all R-sublattices of M .



Chapter IV
Algebras over fields

IV.1 Characteristic polynomial, norm and trace

Each algebra over an integral domain R contains a copy R ·1 of R through its action on
the identity 1, i.e the natural map from R is injective because there are no zero divisors.
In particular, such algebras can (and will) be studied as subalgebras of algebras over
their fraction fields K = Frac(R) = R(0). Here we recall the structure of such algebras.
Let A be an algebra over a field K of dimension m = dimK(A). Left multiplication by
a ∈ A is a linear map `a ∈ EndK(A) whose characteristic polynomial

det(xI − `a) = xm − TrA/K(a)xm−1 + · · ·+ (−1)m NA/K(a) ∈ K[x]

defines the norm NA/K(a) = det(`a) and trace TrA/K(a) = Tr(`a) from A to K. The
algebra A can be viewed as a K[x]-module on which g(x) acts via left-multiplication by
g(a), i.e. via g(`a) ∈ EndK(A). As K[x]-modules, A ' ⊕iK[x]/(fi(x)), where ∏i fi(x)
is the factorization of the characteristic polynomial into irreducible monic factors. The
gcd of the fi is the minimal polynomial of a over K which, unlike the characteristic
polynomial, is independent of the ambient algebra A (i.e. unchanged under embeddings
of A or K(a) into larger K-algebras). The degree of a over K is the degree of its
minimal polynomial and the degree [A : K] of A over K is the maximum degree of its
elements.

IV.2 Semisimple algebras

By the Artin-Wedderburn Theorem I.5.2, each semisimple K-algebra is isomorphic to
a finite product

A1 × · · · × Ar
of simple algebras Ai/K. The center of each simple component Ai is a finite extension
Fi of K. For each a ∈ Ai, the characteristic polynomial of `a ∈ EndFi

(Ai) has the form

det(x− `a) =
(
xni − Trd(a)xni−1 + · · ·+ (−1)ni Nrd(a)

)ni ∈ Fi[x],

where the reduced characteristic polynomial

xni − Trd(a)xni−1 + · · ·+ (−1)ni Nrd(a) ∈ Fi[x]

defines the reduced trace Trd: Ai → Fi and reduced norm Nrd: Ai → Fi, for which

TrAi/Fi
(a) = ni TrdAi/Fi

(a), NAi/Fi
(a) = Nrdni

Ai/Fi
.
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These maps extend to the simple algebras Ai/K by composing with the relative trace
and norm

TrdAi/K = TrFi/K ◦TrdA/Fi
, NrdAi/K = NFi/K ◦NrdA/Fi

,

and finally to the semisimple algebra A/K via

TrdA/K(a1, . . . , ar) =
∑
i

TrdAi/K(ai) =
∑
i

TrFi/K ◦TrdAi/Fi
(ai)

and
NrdA/K(a1, . . . , ar) =

∏
i

NrdAi/K(ai) =
∏
i

NFi/K ◦NrdAi/Fi
(ai).

Given an involution σ on A and a u ∈ A× fixed by σ, the corresponding twisted trace
form is the sesquilinear form

T(σ,u)(x, y) = TrdA/K(σ(x)uy).

IV.2.1 Separability

Let K be a field. A polynomial in K[x] is separable if it has distinct roots in some
algebraic extension of K. It is well known that f(x) is separable iff f(x) and f ′(x)
are relatively prime, i.e. have no common roots. If K has characteristic 0 then every
polynomial in K[x] is separable so inseparability can only occur in prime characteristic.
Each irreducible inseparable polynomial in K[x] has a unique representation f(xpm) for
a irreducible separable polynomial f ∈ K[x] an integer m ≥ 2. Therefore the degree
of any irreducible inseparable polynomial is a multiple of the characteristic. Because
degrees add under products, the degree of any inseparable polynomial is a multiple of
the characteristic. For example, xp − 1 ∈ Fp[x] is inseparable because the freshman’s
dream xp − 1 = (x− 1)p holds in Fp[x].
An element of an algebraic field extension F/K is separable if its minimal polynomial
over K is separable. An algebraic field extension F/K is separable if every element is
separable.
A field extension is separable [21] if the minimal polynomial of every finitely generated
subextension is separable.
A semisimple algebra A/K is separable iff it satisfies any of the following equivalent
conditions:

• The trace pairing (a, b) 7→ TrdA/K(ab) from A× A→ K is nondegenerate.

• If σ is an involution on A fixing a unit u ∈ A×, then the twisted trace form T(σ,u)
is nondegenerate.

• A⊗K F is semisimple for every field extension F/K.



Chapter IV. Algebras over fields 59

Separable field extensions may be further characterized as follows: A derivation on a
ring R is an R-bimodule-valued function δ : R→M that is a homomorphism of abelian
groups δ(x + y) = δ(x) + δ(y) and satisfies Leibnitz’s formula δ(xy) = δ(x)y + xδ(y).
The following conditions on a finite-degree field extension F/K are also equivalent:

• F/K is separable.

• TrF/K 6= 0.

• TrF/K(F ) = K.

• Every derivation K → K has a unique extension to a derivation L→ L.

Finally we have the following equivalent conditions on a semisimple algebra A/K:

• A/K is separable.

• A/K is a finite product of central simple algebras over finite separable extensions
of K.

• There exists a finite separable extension F/K such that A⊗K F is a direct sum
of matrix algebras over F .

IV.2.2 Perfect fields

A field K is called perfect if every finite extension F/K is separable. Equivalently,
K is perfect if every algebraic extension is separable, or if the separable closure is
algebraically closed. A field K is imperfect iff it has characteristic p and its Frobenius
automorphism has a kernel. If F is perfect of characteristic p, then every nonzero
element is a pth power.

IV.2.3 Brauer group

By the Artin-Wedderburn Theorem I.5.2, A is simple iff it is isomorphic to Dκ×κ for
some central division algebra D/K of degree m, satisfying n = κm. Two central
simple K-algebras A1 and A2 are similar (written A1 ∼ A2) if there is an isomorphism
Am×m1 → An×n2 of K-algebras for some integers m and n. Equivalently, A1 ∼ A2 if their
underlying division algebras are isomorphic over K. The corresponding equivalence
classes make up the Brauer group Br(K) with multiplication rule [A] · [B] = [A⊗KB]
and inverse [A]−1 = [Aop], where Aop is the opposite algebra with multiplication
X ·Y = Y X. In particular, if A1 ' Dn×n

1 and A2 ' Dm×m
2 for central division algebras

D1 and D2 over K, then we have A1 ∼ A2 iff [A1] = [A2] iff D1 ' D1. In particular, [A]
is the trivial element of Br(K) precisely when there exists a K-isomorphism Kn×n → A,
in which case A is said to split.
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For example, the Brauer groups of R and C exhaust the possible isomorphism classes
of real division algebras, subdivided into those Br(R) = {[R], [H]} that are central over
R and those Br(C) = {[C]} that are central over C.
If [A] = [D], the capacity is the κ for which A ' Dκ×κ, which satisfies

n = [Dκ×κ : K] = κ[D : K].

The (Schur) index of A is the degree [D : K], for which dimK(D) = [D : K]2. The
exponent, or period, of A is the order of [A] = [D] ∈ Br(K). The exponent and period
are equal if the center of A is a separable field extension, i.e. if A is a separable algebra.
In general, the period and the index have the same prime factors while the exponent
divides the index, so they always coincide if the index is squarefree. If A ' Dκ×κ, then
[1] calls κ the capacity of A, in which case we have n = κm where m is the index.

IV.2.4 Relative Brauer group

If A/K is a central simple K-algebra and F/K is an extension field, then AF := A⊗KF
is a new central simple F -algebra obtained by extending scalars from K to F . The
corresponding map [A] 7→ [AF ] from Br(K) to Br(F ) is a homomorphism (in fact, we
have a functor Br: Fields → Ab)) whose image is trivial iff AF is a matrix algebra
over F , in which case we say that F splits A. In such a case, we obtain a matrix
representation of A over F .
On the other hand, R⊗R C ' C and H⊗R C ' C2×2.
The relative Brauer group Br(K/k) contains the Brauer classes of central simple
algebras A/k split by K and sits in the exact sequence

1→ Br(K/k)→ Br(k)→ Br(K)→ 1

where the last map takes [A] ∈ Br(k) to [AK ] ∈ Br(K). We will see later that there are
cohomological interpretations

Br(K/k) ' H1(Gal(K/k),PGL∞(K)) ' H2(Gal(K/k), K×)

and
Br(k) ' H1(Gal(ks/k),PGL∞(ks)) ' H2(Gal(ks/k), k×s ),

where ks denotes a separable closure of k.

IV.3 Galois cohomology

IV.3.1 H1(G,C) with possibly nonabelian C

Given a left action of a group G on a potentially nonabelian group C, a 1-cocycle is
a function c : G→ C satisfying

cσ1σ2 = cσ1σ1(cσ2) (IV.1)
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for every σ1, σ2 ∈ G. Call two 1-cocycles c, c′ : G→ C equivalent, or cohomologous,
if there is a γ ∈ C such that

c′σ = γ−1cσσ(γ) (IV.2)
for every σ ∈ G. The corresponding equivalence classes comprise the first cohomology
set H1(G,C), which is a pointed set whose distinguished element is the class of the
trivial cocycle cσ = 1.
When C is abelian, the 1-cocycles form an abelian group under pointwise multiplication
(or addition, as they are often written additively in this case) and are sometimes called
crossed homomorphisms. The 1-coboundaries (now a subgroup) are sometimes
called principal crossed homomorphisms. Then H1(G,C) can be constructed as
the quotient group {1-cocycles}/{1-coboundaries}, in which case it classifies splittings
of

1→ C → C oG→ G→ 1
where two splittings s, s′ : G → C o G are equivalent if there is an c ∈ C such that
s′(g) = cs(g)c−1 for every g ∈ G.
For nonabelian C, the equivalence relation (IV.2) is defined directly, rather than by
modding out by 1-coboundaries, as there is no obvious group structure on the set of
1-cocycles when A is nonabelian.
An important application of nonabelian 1-cocycles considers a set X equipped with
compatible actions by G and C, satisfying

σ(c(x)) = (σ(c))(σ(x)) (IV.3)

for every σ ∈ G, c ∈ C and x ∈ X. Then each 1-cocycle c : G → C gives rise to a
corresponding twisted group action

σ ·c x = cσ(σ(x)) (IV.4)

of G on X. The cocycle condition is exactly what is needed for ·c to define a group
action:

σ ·c (τ ·c x)) = σ ·c (cτ (xτ ) = cσ(cτ (τ(x))σ) = cσ(cστ (xστ ) = (cσcστ )(xστ )
= cστ (xστ ) = (στ) ·c x.

Write cX for the set X equipped with this action. While cohomologous 1-cocycles
generally give rise to distinct twisted actions, Galois descent theory provides a natu-
ral setting identifying the corresponding cohomology classes with Brauer equivalence
classes of central simple algebras.

IV.3.2 H2(G,A) with abelian A

Let A be a G-module. A 2-cocycle (a.k.a. a factor set) is a function a : G×G→ A
such that

aσ1, σ2σ3aσ2, σ3 = aσ1σ2, σ3σ3(aσ1, σ2).
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A 2-cocycle a is a 2-coboundary if there exists a 1-cocycle b : Gal(F/K)→ K× such
that

aσ1, σ2 = σ2(bσ1)bσ2

bσ1σ2

.

The 2-cocycles form an abelian group under pointwise multiplication with respect to
which the 2-coboundaries are a subgroup. The quotient group is the second cohomology
group H2(G,A).
Proposition 4.4.1 from [7]. Let

1→ A
i→B

j→C → 1 (IV.5)

be an exact sequence of groups acted on by some group G, such that A is commutative
and contained in the center of B. Then there is an exact sequence of pointed sets

1→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C) δ→H2(G,A)→ H2(G,B)→

where the connecting homomorphism δ takes the class of a 1-cocycle c : G → C to the
class of the 2-cocycle a : G×G→ A defined by i(aσ,τ ) = bσσ(bτ )b−1

στ , where bσ = j−1(cσ)
for an arbitrary lifting j−1 : C → B. As a function of c, a depends only on the class of
c. The class of c is independent of the particular lifting j−1 from C to B.

IV.3.3 Twisted forms

A K-object (V,Φ) consists of a vector space V/K and a tensor Φ ∈ V ⊗n⊗(V ∗)⊗n′ . Two
K-objects (V,Φ) and (W,Ψ) are isomorphic if there exists a K-linear isomorphism
f : V → W such that f⊗n⊗(f ∗−1)⊗n′(Φ) = Ψ. For each field extension F/K, let (VF ,Φ)
be the corresponding F -object, whose underlying vector space is VF = V ⊗KF . If (V,Φ)
and (W,Ψ) are not isomorphic, they may become isomorphic over an extension F/K,
meaning that there is an F -isomorphism between the corresponding F -objects (VF ,Φ)
and (WF ,Ψ). For reasons explained below, W is called a twisted form of V when the
two become isomorphic over some extension.
Let (V,Φ) and (W,Ψ) be K-objects becoming isomorphic over a finite Galois exten-
sion F/K. Then there is a natural action of Gal(F/K) on (VF ,Φ) and on (WF ,Ψ).
Correspondingly, Gal(F/K) also acts on the space of F -isomorphisms from VF to WF

and on the automorphism group Aut(VF ,Φ) via σ(f) = σfσ−1. Then Gal(F/K) and
Aut(VF ,Φ) act compatibly on (VF ,Φ) in the sense of (IV.3), where we take

G = Gal(F/K), A = Aut(VF ,Φ) and X = (VF ,Φ).

A given F -isomorphism f : (VF ,Φ)→ (WF ,Ψ) will not generally be equivariant for the
natural actions of Gal(F/K) on (VF ,Φ) and (WF ,Φ). In fact, we will see that unless
W and V are already isomorphic over K, no such F -isomorphism can exist. However,
f is equivariant if we twist the Galois action on VF by the 1-cocycle c : Gal(F/K) →
Aut(VF ,Φ) given by

cσ := f−1σ(f) = f−1σfσ−1 (IV.6)
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(see Section 2.3 of [7] for the calculation showing that cσ is indeed a 1-cocycle), so that
the following diagram commutes

cVF WF

cVF WF

f

σ σ

f

(recall that σ acts on VF as cσσ). Taking Gal(F/K) invariants shows that f restricts
to an isomorphism (cVF )Gal(F/K) → W , realizing (W,Ψ) as a twisted form of (V,Φ).
If f ′ : (VF ,Φ) → (WF ,Ψ) is another F -isomorphism, then the corresponding 1-cocycle
c′σ is cohomologous to cσ because (IV.2) holds with b = f−1f ′, i.e.

b−1cσσ(b) = f ′
−1
f f−1σfσ−1 σf−1f ′σ−1 = f ′

−1
σf ′σ−1 = c′σ.

On the other hand, the invariant subalgebras of F n×n for the twisted Galois actions
associated to cohomologous 1-cocycles are K-isomorphic (see e.g. Theorem 2.3.3 of [7]),
giving a bijection between H1(Gal(F/K),Aut(VF ,Φ)) and the pointed set of F/K-
twisted forms of (V,Φ).

IV.3.4 Central simple algebras are twisted matrix algebras

Each central simple algebra A/K determines a K-object (A,multA), where multA ∈
A∗⊗A∗⊗A is the tensor corresponding to the algebra multiplication A×A→ A. The
Skolem-Noether theorem implies that every automorphism of A is inner, so

Aut(A) = {x 7→ axa−1 : a ∈ A×} = A×/K×.

When A = Kn×n,
Aut(Kn×n) = PGLn(K) = GLn(K)/K×,

so there is an exact sequence

1→ K× → GLn(K)→ PGLn(K)→ 1.

Now suppose that F/K is a finite Galois extension that splits A. Then the above
implies that the F -isomorphism f : aF n×n → AF is equivariant for the Gal(F/K) action
on F n×n obtained by twisting the canonical action by the PGLn(F )-valued 1-cocycle
aσ = f−1σfσ−1.
The F -isomorphism f restricts to a K-isomorphism

f̃ : (aF n×n)Gal(F/K) → A,

realizing the central simple algebra A/K as a twisted form of Kn×n.
Theorem 2.4.3 of [7] shows that there is a basepoint-preserving bijection between the
first cohomology set H1(Gal(F/K),PGLn(F )) and the pointed set CSAn(F/K) of K-
isomorphism classes of central simple K-algebras of degree n that are split by F . This is
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because the elements of CSAn(F/K) are precisely the F/K-twisted forms of the matrix
algebra Kn×n.
Corollary 2.4.10 of [7] gives a similar bijection between H1(Gal(F/K),PGL∞(F ))
and the relative Brauer group Br(F/K), whose elements are equivalence classes
of central simple simple K-algebras (of any degree) that are split by F . Then
H1(Gal(F/K),PGL∞(F )) inherits an abelian group structure through this bijection,
even though the coefficient group is not abelian. The union

H1(K,PGL∞) :=
⋃

Ks⊃F⊃K
H1(Gal(F/K),PGL∞(F ))

over all extensions contained in a separable closure Ks is in bijection with the Brauer
group Br(K).
It is possible to work with abelian coefficients by going one level higher in cohomology.
Applying Proposition 4.4.1 of [7] to the exact sequence

1→ F× → GLn(F )→ PGLn(F )→ 1

gives a long exact sequence

→ H1(G,GLn(F ))→ H1(G,PGLn(F )) δn−→H2(G,F×)→ H2(G,GLn(F ))→ .

Given a 1-cocycle σ 7→ cσ ∈ PGLn(F ), let bσ be an arbitrary lifting to GLn(F ) and let
aσ,τ be the F×-valued 2-cocycle defined by aσ,τI = bσσ(bτ )b−1

στ . Then the connecting
homomorphism δn maps the class of c in H1(Gal(F/K),PGLn(F )) to the class of a in
H2(Gal(F/K), F×).
What does this say about our 1-cocycle gσ = σ−1fσf−1 coming from an isomorphism
f : F n×n → A ⊗K F? Let ι : F → A be an embedding of a degree n Galois extension
F/K of a number field K into a central simple algebra A/K with dimK(A) = n2. Then
A is an F -vector space of dimension n with respect to the action α ·a = aι(α). There is
a corresponding left action of A on this vector space, identifying A with a K-subalgebra
of EndF (EndF (A)) ' F n×n.
Each δn is an injective map of pointed sets. These maps satisfy
δnm|H1(Gal(F/K),PGLn(F )) = δn for all n,m ∈ N, where we identify F n×n with its
image F nm×nm under the injective F -algebra homomorphism X 7→ X ⊗F Im. The
corresponding direct limit

δ : H1(Gal(F/K),PGL∞(F ))→ H2(Gal(F/K), F×)

is an isomorphism of pointed sets (see Theorem 4.4.5 of [7]).
Each 2-cocycle a : G × G → F× on G = Gal(F/K) determines a central simple K-
algebra

F (G, a) =
{∑

σ

xσuσ : uσxu−1
σ = σ(x), uσuτ = aσ,τuστ

}
called a crossed product, that is split by F and can be viewed as an a-twisted version
of the group algebra F (G). The K-isomorphism class of F (G, a) only depends on the
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cohomology class [a] ∈ H2(G,F×) of a and if b : G2 → F× is another 2-cocycle, the
Brauer classes satisfy [F (G, a) ⊗K F (G, b)] = [F (G, ab)]. If G = 〈σ〉 is cyclic of order
n, then there exists an α ∈ F× such that [a] is represented by the 2-cocycle

aσ,τ =
α if στ = 1

1 otherwise

and the corresponding crossed product is called a cyclic algebra

F (G, a) = F (G,α) =
{∑

σ

xσuσ : uσxu−1
σ = σ(x), un = α

}
.

Brauer-Hasse-Noether and Albert famously proved that every central simple algebra is
cyclic (see e.g. [8]).
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IV.4 Quaternion algebras

The quaternion algebras over K correspond exactly to the 2-torsion in the Brauer group
Br(K). Here we have

1→ Br(K)2 →
⊕
v

Br(Kv)2

∑
invv

−−−−−→ 1
2Z/Z→ 0,

where, for a quaternion algebra A/K, we have invv([Av]) = 0 or 1
2 according to whether

or not Av/Kv splits. In particular, this implies that a quaternion algebra over A is
ramified at an even number of primes. For a fixed Galois extension L/K, we would like
to characterize the pointed set

CSA2(L/K) = {isomorphism classes of quaternion K-algebras split by L}.

Galois descent gives a bijection CSA2(L/K) ' H1(Gal(L/K),PGL2(L)) of pointed
sets. The cohomology of the extension

1→ L× → GL2(L)→ PGL2(L)→ 1

is given by

cohomology sequence here with connecting homomorphism

so that in turn, H1(Gal(L/K),PGL2(L)) can be viewed as a subgroup of

H2(Gal(L/K), L×) ' Br(L/K) := {[A] ∈ Br(K) : AL splits}.

Restricting to the 2-torsion subgroups gives

1→ Br(L/K)2 → Br(K)2 → Br(L)2 → 1.

For example, the field L = Q(
√
m) splits A =

(
a,b
Q

)
iff, for every ramified place v of Q,

Qv(
√
m) is a field (i.e. m /∈ Q2

v). For
(
−1,−1

Q

)
, this amounts to requiring that m < 0 and

−m 6= 4a(7 + 8b).

IV.5 K-algebras with involution

Let h : V ×V → F be a nonsingular hermitian form on V/F , where F/F+ is a quadratic
extension. The adjoint involution σh(a) = h−1a∗h is F/F+-antilinear, and there is a
1-1 correspondence between such involutions and equivalence classes of hermitian forms
modulo multiplication by scalars in F×+ .
Let F/K be a splitting field for A, so that A ⊗K F ' EndF (V ) for some vector space
V/F . Let σF be the extension of σ to End(V ). If σ is of the first kind, then σF is the
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adjoint involution for a bilinear form bσ that is uniquely determined up to scalars in
F×; σ is symplectic if bσ is alternating and orthogonal if bσ is symmetric. If σ is of
the second kind, then σF is adjoint to a hermitian form hσ. Involutions of the second
kind are also called unitary.
By an involuted field (K/k, j), we mean an étale algebra K over a field k, equipped
with an involution j : K → K whose set of fixed points is k. Hence either j is trivial and
K = k, or else j is nontrivial and there are two possibilties: either K/k is a quadratic
separable field extension with nontrivial Galois automorphism j, or K = k × k is a
“doubled field” with j equal to the swap s(x, y) = (y, x). By a central simple algebra
over k × k, we will mean a direct product of central simple k-algebras.
Given an involuted field (K/k, j), Wall [22] first considers involuted algebras (A, J)
consisting of a central simple K-algebra A with involution J restricting to j on the
center. He defines an equivalence relation such that the class ((A, J)) of (A, J) contains
the involuted algebras of the form (A⊗Kn×n, J ⊗ Jn), where Jn : Kn×n → Kn×n is the
adjoint involution for some nondegenerate j-hermitian form on Kn. There is a group
structure on the equivalence classes, where ((A1, J1)) ·((A1, J2)) = ((A1⊗KA2, J1⊗J2))
and where ((A, J))−1 = ((Aop, Jop)), with Jop defined as Jop(aop) = J(a)op. The
resulting group Br(K/k, j) is also a functor from involuted fields to abelian groups.

IV.5.1 Involutions on quaternion algebras

The involutions on a quaternion algebra A are completely classified (see e.g. Proposition
2.21 of [2]). Every involution of the first kind on A has the form σu(a) = uāu−1 for
some nonzero quaternion u satisfying ū = ±u, where a 7→ ā = Trd a−a is the canonical
involution. There are two possibilities: if ū = u, then u is proportional to the identity,
giving the canonical involution as the unique symplectic involution. The orthogonal
involutions are obtained from pure quaternions u ∈ A×0 := A0 ∩ A× (i.e. ū = −u),
which are uniquely determined up to multiplication by scalars in F×.
A central simple algebra A/K equipped with a unitary involution τ may be viewed as
a central simple involuted algebra (A, τ)/(K/K+, c). Restricting scalars to K+ turns
A into a semisimple K+-algebra containing a unique quaternion K+-subalgebra B (the
discriminant algebra – see §10 of [2]) such that (A, τ) ' (B ⊗K+ K, ·̄ ⊗ c).
Given a quaternion algebra B/K+ and a quadratic extension (K/K+, c) that splits B,
let φ : K2×2 → B ⊗K+ K be any splitting and define u := φ−1τφτ = φ−1τ(φ). Then I
claim that (K2×2, σ) ' (B ⊗K+ K, ·̄ ⊗ τ), where σ(a) = c ·u a = uc(a)u−1 is complex
conjugation in a different basis. Note that even here there is nothing forcing σ to
be hermitian conjugation, although in cases where it is, the unit group would be the
ordinary unitary group.
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IV.5.2 Algebras over real involuted fields

The Galois closure of R is C and we have

Br(C) BW(C)

Br(R) BW(R)

=
1 Z/2

Z/2 Z/8

The Galois closure of (R, 1) is (C×C, s) and its Galois group is 〈s, c〉 = (Z/2)2, where
c is coordinatewise complex conjugation. The three intermediate involuted fields are
as follows, with each arrow labeled by the nontrivial automorphism fixing the included
field:

((C× C)/C, s)

(C, 1) (C/R, c) ((R× R)/R, s).

(R, 1)

s sc
c

c c
s

The modified Brauer groups are

1

Z/2 1 Z/2

Z/2× Z/2

and we have Br(R, 1) ' Br(C, 1) × Br((R × R)/R, s). The elements of Br(K/k, j)
correspond to classes of simple involuted algebras (A, J) determining a group G = {a ∈
A : aJ(a) = 1} according to the following possibilities:

GL(C)

{O(C), Sp(C)} U {GL(R),GL(H)}

{O(R), Sp(R),O(H), Sp(H)}

We also obtain the special versions G1 = {a ∈ G : Nrd(a) = 1} though I’m unclear
what changes for the symplectic groups Sp(C) and Sp(H). The graded Brauer groups



Chapter IV. Algebras over fields 69

are
Z/2

Z/8 Z/2× Z/2 Z/8

Z/8× Z/4



Chapter V
Superalgebras

V.1 Superalgebras

A superalgebra A over a field K is a K-algebra equipped with a Z/2-grading A =
A0 +A1 into subspaces Ai ⊂ A with AiAj ⊂ Ai+j. An a ∈ A is homogeneous if a ∈ Ai
for some i that we call the degree δ(a) of a. A subspace S ⊂ A is homogeneous if it
generated by homogeneous elements, in which case S = S0 + S1 with Si = S ∩ Ai.
The center Z(A) of a superalgebra A/K is a superalgebra. Call a superalgebra A/K
central if Z(A)0 ' K and simple if A contains no nontrivial homogeneous ideals.
Because a simple superalgebra can have inhomogeneous ideals, it follows that a super-
algebra is simple if it is simple as an algebra.
The supercenter Ẑ(A) of a superalgebra A/K is the subsuperalgebra generated by
homogeneous z ∈ A such that za = (−1)δ(z)δ(a)az for every homogeneous a ∈ A. In
other words, Ẑ(A) = Ẑ(A)0 + Ẑ(A)1 with Ẑ(A)0 = Z(A)0 but Ẑ(A)1 containing those
elements in A1 commuting with A0 while anticommuting with A1.
The tensor product of two superalgebras A and B is the superalgebra A⊗̂B, which
for homogeneous elements a, a′ ∈ A and b, b′ ∈ B, satisfies δ(a⊗ b) = δ(a) + δ(b) and

(a⊗ b)(a′ ⊗ b′) = (−1)δ(a)δ(b)aa′ ⊗ bb′.

The graded opposite Agrop is isomorphic to A but with multiplication defined on
homogeneous elements a, b ∈ A via agropbgrop = (−1)δ(a)δ(b)(ba)grop.
Given a super vector space V = V0 + V1 over a field K, the endomorphism algebra

End(V ) ' Hom(V0, V0) + Hom(V1, V1)︸ ︷︷ ︸
degree 0

+ Hom(V0, V1) + Hom(V1, V0)︸ ︷︷ ︸
degree 1

is a central simple superalgebra over K
Our presentation of Wall and Clifford invariants leans heavily on [20].

V.2 Brauer-Wall group

The graded Brauer group BW(K) [23], or Brauer-Wall group, is the group of equiva-
lence classes (A) of K-superalgebras of the form A⊗̂End(V0 +V1) for some super vector
space V0 + V1. The product of two classes is given by (A) · (B) = (A⊗̂KB) and the
inverse by (A)−1 = (Agrop). The ten-fold way arises in this setting, and we will see
below that BW(C) ' Z/2 and BW(R) ' Z/8.

70
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Since every algebra can be viewed as a superalgebra with only even elements (i.e. with
A = A0), the ordinary Brauer group Br(K) is a subgroup of BW(K). The corresponding
inclusion belongs to an extension

1→ Br(K)→ BW(K)→ Q(K)→ 1,

of the abelian group Q(K) of extended square classes, itself the extension

1→ K×/(K×)2 → Q(K)→ Z/2→ 0

of Z/2 by K×/(K×)2 with multiplication given by (d, e) · (d′, e′) = ((−1)ee′dd′, e+ e′).
To describe the homomorphism from from BW(K) to Q(K), first note that if A/K is
a central simple superalgebra, then Z(A)0 = K1A and Ẑ(A)1 = 0, but there are two
possibilties for the odd part Z(A)1:

• A is of even type if Z(A)1 = 0, in which case Z(A0) = K(z) for some z ∈ Z(A0)
with z2 ∈ K× and which gives an inner grading, i.e. zaiz−1 = (−1)iai for ai ∈ Ai.
In this case, A/K and A0/K(z) are central simple algebras.

• A is of odd type if Z(A)1 6= 0, in which case Z(A) = K(z) for some z ∈ A1 with
z2 ∈ K× and for which A1 = zA0. In this case, A0/K and A/K(z) are central
simple algebras.

Note that K(z) = K × K whenever z ∈ K×, in which case a central simple algebra
over K × K means a direct product of central simple K-algebras. This implies that
a central simple graded algebra A/K is not simple as a K-algebra iff it has odd type
with z2 ∈ (K×)2.
The homomorphism BW(K)→ Q(K) then acts as (A) 7→ (d, e), where e ∈ {0, 1} is the
type of A (even or odd), and where the square class d = z2 mod (K×)2 is a well-defined
element of K×/(K×)2 because z is determined up to multiplication by scalars in K×.
The element z appears naturally in the theory of Clifford algebras (e.g. as the fifth
gamma matrix), as we see in the next section.
Some authors refer to the Wall invariants of a central simple superalgebra A, con-
sisting of its supercenter K and its class in BW(K), which is determined by the type
e ∈ {0, 1} of A(even/odd), the square class of z2 in K×/(K×)2 and the ordinary class
in Br(K) of either A/K (in the even case) or of A0/K (in the odd case).
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V.3 Clifford algebras

Let (V, q) be a quadratic space over a field K. The Clifford algebra C(V, q) is the
quotient of the tensor algebra of V by the ideal generated by the elements v2 − q(v).
The tensor algebra carries a natural Z/2-grading such that this ideal is homogeneous
(i.e. is generated by homogeneous elements). Therefore, C(V ) inherits this natural
Z/2-grading C(V )0 ⊕ C(V )1, which is independent of the characteristic of K and also
of the regularity of q. Alternatively, we can define C(V ) to be the associative K-algebra
generated by the vectors v ∈ V subject to v2 = q(v). As a vector space

C(V ) =
n⊕
k=0

∧k
V =

n⊕
k=0

spanK{vi1 · · · vik : 1 ≤ i1 < · · · < ik ≤ n}

= spanK{vI : I ⊂ {1, . . . , n}},

where, given I = {i1, . . . , ik} ⊂ {1, . . . , n} with i1 < . . . < ik, we define vI := vi1 · · · vik .
The Clifford algebra C(V ) can be viewed as a deformation of the exterior algebra ∧ V ,
to which it is isomorphic when q = 0.
The grade automorphism is the K-linear automorphism

α(v1 · · · vk) = (−1)kv1 · · · vk

of C(V ), which restricts to (−1)a on C(V )a. The canonical involution is the K-linear
antiautomorphism

(v1 · · · vk)′ = vk · · · v1

of C(V ).
The bilinear form associated to q takes the explicit form

bq(v, x) = q(v + x)− q(v)− q(x) = (v + x)2 − x2 − v2 = vx+ xv.

For u ∈ C(V )×, let ru : x 7→ α(u)xu−1 and note that rurw = ruw. Each anisotropic
v ∈ V (meaning q(v) 6= 0) defines a transvection

rv(x) = −vxv−1 = (xv − bq(v, x))v−1 = x− bq(v, x)v−1 = x− bq(v, x)
q(v) v, (V.1)

where we have used v−1 = v
v2

Away from characteristic 2, we can define the bilinear form b(v, x) = 1
2bq(v, x), which

satisfies q(v) = b(v, v) and reproduces the familiar formula

rv(x) = x− 2b(x, v)
b(v, v)v (V.2)

for the reflection through the subspace perpendicular to v, for which rv(v) = −v and
rv(w) = w if bq(v, w) = 0.
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V.4 The Clifford invariant

Let (V, q) be a nondegenerate quadratic space over a field K (of characteristic not equal
to 2, for simplicity). The Clifford algebra C(q) has a canonical grading making it a
central simple K-superalgebra. Given another nondegenerate quadratic space (V ′, q′)
over K, we have C(q ⊕ q′) = C(q)⊗̂KC(q′) and C(−q) = C(q)grop. Therefore the
image of C(q) in BW(K) is an invariant of (V, q) – the Clifford invariant – while the
associated map factors through the Witt group W (K) of isometry classes [(V, q)] of
the anisotropic parts of quadratic spaces (V, q) over K with group structure

[(V, q)] + [(V ′, q)] = [(V ⊕ V ′, q ⊕ q′)] and [(V, q)]−1 = [(V,−q)].

Let e1, . . . , en be an orthogonal basis for (V, q) and let z = e1 · · · en. Then z2 ∈ K× and
the image of z2 modulo (K×)2 is equal to the discriminant (III.1)

disc(V ) := (−1)n(n−1)/2 det(V ) =
det(V ) if dim(V ) ≡ 0 or 1 mod 4
− det(V ) if dim(V ) ≡ 2 or 3 mod 4,

where det(V ) := det(q(vi, vj)) mod (K×)2 is the square class of the determinant of the
Gram matrix of any basis vi of V , and where q(v, w) = 1

2(q(v + w) − q(v) − q(w)).
The quadratic extension K(z) ' K[x]/(x2 − disc(V )) is therefore well-defined and is
isomorphic to either K×K or a quadratic field extension depending on whether disc(V )
is a square in K×. We have

Z(C(V )) =
K if n is even
K(z) if n is odd,

Z(C(V )0) =
K(z) if n is even
K if n is odd,

One can also show that C(V ) is a central simple K-algebra when dim(V ) is even and
C(V )0 is a central simple K-algebra when dim(V ) is odd. If disc(V ) is not a square,
then C(V )0 is a central simple K(z)-algebra when n is even and C(V ) is a central simple
K(z)-algebra when n is odd. If disc(V ) is a square, then C(V )0 is the direct product
of two central simple K-algebras when n is even and C(V ) is the direct product of two
central simple K-algebras when n is odd. Despite all this complexity

Ẑ(C(V )) = Ẑ(C(V ))0 = Z(C(V ))0 = K

verifies that in every dimension, C(V ) is a central simple K-superalgebra.
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V.5 Brauer-Wall groups over R

1→ Br(C)︸ ︷︷ ︸
1

→ BW(C)︸ ︷︷ ︸
Z/2

→ Q(C)︸ ︷︷ ︸
Z/2

→ 1

where Q(C) = Z/2 is the trivial extension

1→ C×/(C×)2︸ ︷︷ ︸
1

→ Q(C)︸ ︷︷ ︸
Z/2

→ 〈−1〉 → 1.

Over R, we have the exact sequence

1→ Br(R)︸ ︷︷ ︸
Z/2

→ BW(R)︸ ︷︷ ︸
Z/8

→ Q(R)︸ ︷︷ ︸
Z/4

→ 1

where
1→ R×/(R×)2︸ ︷︷ ︸

Z/2

→ Q(R)︸ ︷︷ ︸
Z/4

→ 〈−1〉 → 1.

V.5.1 The 10-fold way

Let V be a complex vector space with a nondegenerate Hermitian form h : V × V →
C and let J ∈ AutR(End(V )) be the corresponding involution for which h(v, aw) =
h(J(a)v, w) for every a ∈ End(V ) and every v, w ∈ V . Given a Hamiltonian H ∈
End(V )〈J〉, i.e. H is Hermitian, satisfying J(H) = H, its symmetry group EndR(V )H =
{g ∈ EndR(V ) : gHg−1 = H} decomposes into a unitary part and a possible antiunitary
part. Antiunitary symmetries include time-reversal or charge conjugation. On the
other hand, given a unitary representation of a group G, we can ask for the space
End(V )J ∩End(V )G = End(V )〈J,G〉 of Hermitian operators commuting with the action
of G.

V.6 Superalgebras over involuted fields

Wall further considered involuted superalgebras (A, J), where A is a central simple
superalgebra over K with involution J restricting to j on the center Z(A) [22]. The
grading on A determines a second involution J ′ on A such that J ′(a) = (−1)iJ(a) if
a ∈ Ai. Because Z(A)0 = Ẑ(A) = K, these involutions coincide on the even part A0
and, in particular, on the graded center Ẑ(A). If A is of even type, then they coincide
on the ordinary center Z(A), but if A is of odd type, they differ on the odd part of the
center.
There is a 54-fold way of Brauer groups associated to the involuted fields extending R:

1→ BW(R, 1)
Z/8×Z/4

→ BW(C, 1)
Z/8

×BW((R× R)/R, s)
Z/8

→ BW((C× C)/C, s)
Z/2

→ 1.



Chapter VI
Orthogonal and spin groups

VI.1 The Clifford group

Let (V, q) be a quadratic space. The Clifford group1

GPin(V ) = {u ∈ C(V, q)× : ru(V ) = V } ⊂ C(V, q)×h

is the subgroup of homogeneous units in the Clifford algebra taking V to itself. It is an
extension

1→ K× → GPin(V ) r→O(V )→ 1
of the orthogonal group O(V ). The quadratic form q extends to a homomorphism
q : GPin(V )→ K× known as the Clifford norm q(u) = u′u. Let Pin(V ) be its kernel.
The spinor norm

ν : O(V )→ K×/(K×)2

is the map induced by the Clifford norm via ν(ru) = q(u)(K×)2 (following [6] on the
sign).
We follow [6] (Section 9.§3) by organizing the relevant groups into the following diagram
with exact rows and columns; the dotted arrow is included when V is isotropic:

1 1 1

1 ±1 Pin(V ) rPin(V ) 1

1 K× GPin(V ) O(V ) 1

1 (K×)2 K× K×/(K×)2 1

1 1.

r

r

q ν

1The Clifford group was never actually defined by Clifford, but was instead introduced by Lipschitz.
Also not the same as the Clifford group of quantum information theory although it is somewhat related
over F2. Clifford algebras had been called Clifford-Lipschitz algebras until Chevalley started calling
them Clifford algebras in the 50s. See [24], [25] for more on this history.
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VI.2 Special orthogonal and spin group

Because its elements are homogeneous, the Clifford group decomposes as a disjoint
union GPin(V ) = GPin(V )0 ∪GPin(V )1 with GPin(V )i = GPin(V ) ∩ C(V )i. Define

GSpin(V ) := GPin(V )0

SO(V ) := rGSpin(V )

Spin(V ) := Pin(V ) ∩ C(V )0 = ker q|GSpin(V )

Θ(V ) := rSpin(V )

and note that [O(V ) : SO(V )] = 2 in every characteristic. Note that we do not define
SO(V ) as the kernel of the determinant. The previous diagram becomes

1 1 1

1 ±1 Spin(V ) Θ(V ) 1

1 K× GSpin(V ) SO(V ) 1

1 (K×)2 K× K×/(K×)2 1

1 1

r

r

q ν

Given g, h ∈ O(V ), note that ghg−1h−1 ∈ SO(V ) and

ν(ghg−1h−1) = ν(g)ν(h)ν(g)−1ν(h)−1 = 1.

Therefore [O(V ),O(V )] ⊂ Θ(V ) and we have a subnormal series

O(V ) ⊃ Θ(V ) ⊃ [O(V ),O(V )] ⊃ [SO(V ), SO(V )] ⊃ {I}. (VI.1)

The spinor norm is surjective if V is isotropic, in which case SO(V ) is an extension

1→ Θ(V )→ SO(V )→ K×/(K×)2 → 1

of the full group K×/(K×)2 of square classes by the image Θ(V ) of the spin group
Spin(V ). Because (K×)p = K× iff K is perfect of characteristic p, the group K×/(K×)2

of square classes is trivial iff K is perfect of characteristic 2. In such a case, the spinor
norm is trivially surjective and we have SO(V ) = Θ(V ) ' Spin(V ).
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Theorem VI.2.1 Let V be an isotropic quadratic space. There are three possi-
bilities

• dim(V ) = 2, in which case SO(V ) is abelian, Θ(V ) = [O(V ),O(V )] and
[SO(V ), SO(V )] = {I}.

• V is a 4d hyperbolic space H over F2.

• Otherwise Θ(V ) = [O(V ),O(V )] = [SO(V ), SO(V )]

For a proof see e.g. Section 6 of [26].
The isometry group O(H) of a 4d hyperbolic space H is an index-10 subgroup of the
full symplectic group Sp4(F2). When H = V ⊕ V for the anisotropic 2d space V over
F2, it has the explicit form

O(H) = (O(V )×O(V )) o Z/2 = (SL2(F2)× SL2(F2)) o Z/2.

The commutator subgroup is

[O(H),O(H)] ' (SO(V )× SO(V )) o Z/2 = (Z/3× Z/3) o Z/2.

Along with the pairs of local transpositions, this generates SO(H), for which
[SO(H), SO(H)] ' SO(V ) × SO(V ) = Z/3 × Z/3, giving a subnormal series with
orders 72, 36, 18 and 9.
The hyperbolic space H is exceptional in another way:

Theorem VI.2.2 (Cartan-Dieudonne Theorem) Let V be a quadratic space with
V 6' H. Then O(V ) is generated by the rv for non-isotropic v and each element
is the product of at most dim(V ) such transvections.

The subgroup of O(H) generated by transvections contains O(V )×O(V ) because q11⊕
q11 is anisotropic. Identifying these as a subgroup of local Cliffords, it must be that the
SWAP is not a transvection, so that the transvection subgroup is equal to O(V )×O(V ).
Interestingly, one can show that this most basic qubit SWAP gate cannot be built from
transvections unless there are at least 3 qubits. Actually it has trivial Dickson invariant
(so is contained in SO(q⊕q)), implying it is not a transvection as ∆(rv) = 1 for isotropic
v. One implication of this is that there is an inclusion Sn ↪→ SO(q⊕n) for every nonzero
quadratic form q : F2

2 → F2.
We observe the following from explicit calculations: |O(B)| = |Sp4(2)| = 720, whereas

|O(q ⊕ q′)| =
72 if Arf(q) = Arf(q′)

120 if Arf(q) 6= Arf(q′).

Each O(q ⊕ q′) is its own normalizer in Sp4(F2). So each left coset is a right coset and
vice-versa, therefore double cosets are diagonal. Furtherore, O(q⊕ q′) and O(p⊕p′) are
conjugate in Sp4(F2) iff they have the same Arf invariant.
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There is a lot of annoyingly conflicting notation in the literature, even more confusing
since many of the relevant subgroups coincide in most cases.

grading det=1 Γ im(Γ0) q|Γ0 =1 im(Spin) commutator
Here 0/1 Γ SO Spin r(Spin) [O,O]

Chevalley ± Γ O+ Γ+
0 Ω O′

Cassels 0/1 O+ Γ Spin Θ Ω
O’Meara ± O+ O′ Ω
Borcherds 0/1 Γ SO Spin

VI.3 Real orthogonal groups

Let V = Rm+n and take

q(x) = xT diag(1, . . . , 1,−1, . . . ,−1)x = x2
1 + · · ·+ x2

m − x2
m+1 − · · · − x2

m+n.

If m,n ≥ 1, then Om,n(R) has four connected components

Om,n(R) = Om,n(R)00 ∪Om,n(R)01 ∪Om,n(R)10 ∪Om,n(R)11,

where Om,n(R)ij changes the orientation on the first m coordinates by (−1)i and on
the second n by (−1)j. This can be shown using a Clifford algebra represented on∧mRm ⊗ ∧nRn.
For example,

O1,1(R)00 =
{(

cosh(a) sinh(a)
sinh(a) cosh(a)

)
: a ∈ R

}
.

The special orthogonal group has two connected components

SOm,n(R) = SOm,n(R)0 ∪ SOm,n(R)1 = Om,n(R)00 ∪Om,n(R)11.

The spinor norm is constant on the connected components and so can be computed on
any element. Its kernel is

Θm,n(V ) = Om,n(R)00 = SOm,n(R)0.

When m and n are odd there are canonical choices for “time reversal”

T = rx1 · · · rxm = diag(−1, . . . ,−1, 1 . . . , 1) ∈ Om,n(R)10,

for “parity-reversal”

P = rxm+1 · · · rxm+n = diag(1, . . . , 1,−1, . . . ,−1) ∈ Om,n(R)01

and for “charge-conjugation”

C = TP = rx1 · · · rxm+n = diag(−1, . . . ,−1).
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If m is even then one of the first reflections needs to be dropped, and similarly with n
(but there is no canonical choice). This means an odd number of reflections is needed
to change orientation, so that ν(rx1) = 1 and ν(rxm+1) = −1, implying that ν(T ) = 1
and ν(P ) = ν(C) = −1.2

r(Spinm,n(R)) = [Om,n(R),Om,n(R)] is the connected component of Om,n(R) containing
the identity.
If n = 0 then there are only two components

Om,0(R) = Om,0(R)0 ∪Om,0(R)1

and ν = 1 on both components whereas det(Om,0(R)i) = (−1)i. In particular,
SOm,0(R) = Om,0(R)0. If m = 0 we similarly have

O0,n(R) = O0,m(R)0 ∪O0,n(R)1

in which case ν(O0,n(R)i) = det(O0,n(R)i) = (−1)n. So over the reals, the spinor norm
is only interesting in the indefinite case.
In lower dimensions, we have
R× ' R+ × {±1} and SO1,1(R) ' R+.

VI.4 Characteristic 2

The properties of Q2-valued forms under Z2-equivalence are really rather
tiresome. Fortunately... a detailed knowledge is not needed for the discus-
sion of “global” forms. Only the masochist is invited to read this section.
(J.W.S. Cassels, Section 8.2 of Rational Quadratic Forms [4])

With the preservation of his sanity uppermost on his mind, this senior-aged
author has made his clear and unequivocal choice. Unless explicitly stated
to the contrary, all fields over which quadratic forms are considered in this
book will be assumed to have characteristic not equal to 2.
(T.Y. Lam, Introduction to Quadratic Forms over Fields [20])

I prefer to stick to even unimodular lattices. Life is too short to figure out
exactly what happens at the prime 2 for general quadratic forms.
(some Fields medalist)

Not only was Jacques Tits a constant source of inspiration through his work,
but he also had a direct personal influence, notably through his threat —

2Unless you’re on the East coast or using the other sign convention for the spinor norm, in which
case ν(T ) = −1 and ν(P ) = 1.
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early in the inception of our project — to speak evil of our work if it did
not include the characteristic 2 case. Finally he also agreed to bestow his
blessings on our book sous forme de préface.
(Introduction to The Book of Involutions [2])

One cannot always avoid characteristic 2. Applications to coding theory largely involve
binary codes. Characteristic 2 arises naturally when reducing by appropriate primes.
The group F×/(F×)2 of square classes of each completion F of Q is a vector space over
F2, having dimension 1 for R, dimension 2 for Qp with odd p and dimension 3 for Q2.
Given a quadratic form q : V → K, let V ⊥ = {v ∈ V : bq(v, V ) = 0}. We follow [2] and
call q regular if either V ⊥ = 0, or dim(V ⊥) = 1 and q(V ⊥) 6= 0, with the latter case
only occuring for odd-dimensional spaces in characteristic 2. Some authors [5] (p. 207)
call the latter case semiregular.
Let (V, q) be an even-dimensional regular quadratic space over a field K of characteristic
2. Then V has a symplectic basis e1, f1, . . . , en, fn with respect to which

q(x) = xT



a1 1
b1

. . .

an 1
bn

x = x̃T



a1 1
. . .

. . .

an 1
b1

. . .

bn


x̃

where ai = q(ei), bi = q(fi) and x̃ = (x1, x3, . . . , x2n−1, x2, x4, . . . , x2n)T . The associated
bilinear form is then

Bq(x, y) = xT



1
1

. . .

1
1

y = x̃T



1
. . .

1
1

. . .

1


ỹ,

so we see there is, up to basis changes, only one regular bilinear form on an even-
dimensional vector space in characteristic 2.
The orthogonal group O(V ) acts as automorphisms of C(V ), fixing C(V )0 and
Z(C(V )0) setwise. Since Z(C(V )0) is a separable quadratic extension of K, its au-
tomorphism group over K is isomorphic to Z/2, so the action of O(V ) on Z(C(V )0)
defines a homomorphism O(V )→ Z/2 called the Dickson invariant, whose kernel is
precisely SO(V ).
Note that the subset ℘(K) = {x+ x2 : x ∈ K} is an additive subgroup of K because

(x+ y) + (x+ y)2 = x+ y + x2 + 2xy + y2 = x+ x2 + y + y2.
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The Arf invariant Arf(q) is the image of ∑i aibi in the additive group K/℘(K), The
Artin-Schreier isomorphism K/℘(K) ' H1(K,F2) gives a 1-1 correspondence between
the group K/℘(K) and the separable quadratic extensions of K (see [6] p. 313). For
example, ℘(F2) = 0 , so there are two separable quadratic extensions of F2: F4 and
F2 × F2.
In characteristic 2, the orthogonal group O(q) is generated by the transvections
rv(w) = w + Bq(w,v)

q(v) v defined by the anisotropic v (i.e. for which q(v) 6= 0). Recall
that transvections share the property rv(v) = v with reflections but they do something
other than negate orthogonal vectors in characteristic 2.
For a, b ∈ F2, let

qab(x) = xT
(
a 1
0 b

)
x = ax2

1 + x1x2 + bx2
2.

All four of these quadratic forms have the same associated bilinear form Bq11 =
xT
(

1
1

)
y = x1y2 + x2y1.

The quadratic form q11(x) = x2
1 + x1x2 + x2

2 is the unique anisotropic form on F2
2.

Because q11(F2
2 \ 0) = 1, each of the three nonzero vectors in F2

2 \ 0 =
{(

0
1

)
,
(

1
0

)
,
(

1
1

)}
defines an rv ∈ O(q11), which fixes v while swapping the other two vectors. Therefore
O(q11) ' S3 ' SL2(F2). Furthermore,

SO(q11) = Θ(q11) = [O(q11),O(q11)] =
〈(

0 1
1 1

)〉
' Z/3

and [SO(q11), SO(q11)] is trivial. Note that SO(q11) preserves the matrix
(

1 1
0 1

)
, while

the orbit of the full O(q11) consists of
(

1 1
0 1

)
and its transpose

(
1 0
1 1

)
, each of which

give rise to the same quadratic form q11. The Arf invariant is ∆(q11) = 1 ∈ F2. The
associated bilinear form Bq11 = xT

(
1

1

)
y = x1y2 + x2y1 has the same automorphism

group as O(q11).
The remaining three quadratic forms q00, q01 and q10 are isotropic and make up a single
equivalence class. They all have trivial Arf invariant, so the Arf invariant distinguishes
the two equivalence classes (even though both classes have the same associated bilinear
form). The automorphism groups of these isotropic forms are

O(q00) = 〈r11〉 =
〈(

0 1
1 0

)〉
, O(q10) = 〈r10〉 =

〈(
1 0
1 1

)〉
, O(q01) = 〈r01〉 =

〈(
1 1
0 1

)〉
,

which are all isomorphic to Z/2, whereas SO, Θ, [O,O] and [SO, SO] are all trivial.
Relation to the theta functions θab via Γab/Γ(2) ⊂ SL2(2). Connection to modular
forms of half-integral weight / free fermions.
The only counterexample to Cartan-Dieudonne is the hyperbolic space (F4

2, q11 ⊕ q11),
for which

O(V ) = SL2(2) o Z/2 = (SL2(2)× SL2(2)) o Z/2 =
〈(

g1 0
0 g2

)
,
(

0 I
I 0

)
: g ∈ SL2(2)

〉
.

The subgroup generated by transvections in vectors in F2
2⊕0∪0⊕F2

2 is SL2(2)×SL2(2).
Because all other nonzero vectors in F4

2 are isotropic, there is no other vector through
which we can reflect to get the automorphism swapping the copies of SL2(2).
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VI.5 Unitary groups

A Hermitian form 〈·, ·〉 : V×V → C on a complex vector space V gives rise to a quadratic
form q : V → R via q(v) = 〈v, v〉 = v†v, where v† ∈ V ∗ is the conjugate transpose with
respect to the Hermitian form. So v2 = v†v as an element of the corresponding Clifford
algebra. The unitary group is the subgroup of the orthogonal group O(q) preserving
either a complex structure or a symplectic form. Keep in mind that Clifford algebras
by themselves are used to deal with bilinear forms and orthogonal groups. Unitary
groups must additionally preserve either a complex structure or a symplectic form.
More precisely, the unitary group satisfies the “two-out-of-three” property

Un(C) = O2n(R) ∩ Sp2n(R) ∩GLn(C)

where the intersection of any two is contained in the third.
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Integrality

VII.1 R-lattices

Let R be an integral domain with fraction field K. An R-module M is torsion free if
whenever r ∈ R and m ∈M satisfy rm = 0, then either r = 0 or m = 0. Equivalently,
M is torsion free if the natural map from M into the vector space MK := K ⊗R M is
injective.

Exercise VII.1.1 Show that a commutative ring is an integral domain iff it is a
torsion-free module over itself.

An R-lattice is a finitely generated torsion-free R-module. The rank rankR(Λ) =
dimK(ΛK) of an R-lattice Λ is the maximum number of linearly independent elements
of Λ. By an R-lattice in a finite-dimensional vector space V/K, we mean an R-lattice
Λ generated by a basis for V ([1] calls this a full R-lattice). Every R-lattice over a
Dedekind domain is projective and every R-lattice over a PID is free. Over an integrally
closed Noetherian domain, each R-lattice Λ is an extension

0→ Rn → Λ→ a→ 0,

of some ideal a ⊂ R by a free R-module. By definition, this sequence only splits to
give Λ ' Rn ⊕ a when a is projective. Over a Noetherian domain, the torsion-free
requirement means Ass(Λ) = (0), while over a Noetherian ring, Ass(M) ⊂ Ass(Λ),
where Ass(M) is the set of prime ideals p ⊂ R that equal the annihilator of some
element of Λ.

VII.2 Integral R-algebras

Let R be an integral domain. An element a in an R-algebra is integral if there exists
a monic polynomial f ∈ R[x] such that f(a) = 0, i.e. if there are ri ∈ R such that
an + rn−1a

n−1 + · · ·+ r0 = 0. The integral closure of R in A is the set of elements of
A that are integral over R. One would in principle need to check all monic polynomials
vanishing at a to decide whether a is R-integral. However, if R is an integrally closed
domain with fraction field K, then ([1] 1.14) an element a of an R-algebra is integral
iff its minimal polynomial over K is contained in R[x].

Theorem VII.2.1 Let A be a commutative algebra over an integral domain R.
Then the integral closure of R in A is a ring, hence an R-algebra.

The proposition follows directly from two lemmas:
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Lemma VII.2.1 (c.f. [1] Theorem 1.10) Every finitely generated algebra over an
integral domain is integral.

Proof. Let A be a finitely generated algebra over an integral domain R. Since A is
finitely generated over R, it has an integral basis ai such that A = Ra1 + · · · + Ran.
Because A is a ring, left multiplication by a ∈ A transforms this basis according to a
matrix α ∈ Rn×n such that aai = ∑

j αijaj. This implies that

0 = det(aIm − α) = an + rn−1a
n−1 + · · ·+ r0

with each ri ∈ R, hence a is integral.

Lemma VII.2.2 Let A be an algebra over a commutative ring R and let a, b ∈ A
be integral elements that commute. Then R[a, b] is a finitely generated over R.

Proof. By commutativity, integrality and associativity (in that order),

R[a, b] = R[a]R[b] =
(

n∑
i=1

Rai
) m∑

j=1
Rbj

 =
n∑
i=1

m∑
j=1

Raibj.

Therefore R[a, b] is finitely generated as an R-module.

Proof of Proposition. Let a, b ∈ A be arbitrary. Because they commute, R[a, b] is a
finitely generated R-module by Lemma VII.2.1. By Lemma VII.2.2, a, b, a± b and ab
are all integral since they are contained in R[a, b]. The theorem follows.

The theorem fails in the noncommutative case. For example, let R = Z, F = Q,
A = Q2×2. Then a =

(
0 1/2
0 0

)
and b =

(
0 0

1/2 0

)
are elements of A that are integral over

Z because a2 = b2 = 0, but a + b is not integral because its characteristic polynomial
is x2 − 1/4. On the other hand, Z[a, b] = Z[1

2 ]2×2 is integral over the Dedekind domain
Z[1

2 ], so Theorem VII.2.1 holds if we take R = Z[1
2 ]. So this is not much different than

picking a =
(

0 1
0 0

)
and b =

(
0 0
1 0

)
, in which case Z[a, b] = Z2×2 is integral over Z.

VII.2.1 R-orders

Let R be an integral domain with fraction field K and let A be a finite-dimensional
K-algebra. An R-order in A is a finitely generated torsion-free R-subalgebra Λ ⊂ A
with ΛK = A, i.e. an R-lattice in A that is also a ring.
Proposition ([1] 8.6). Every R-order is R-integral. If R is integrally closed in K, then
the minimum polynomial and characteristic polynomial of each element in an R-order
is contained in R[x].
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Every element of an R-order is R-integral, every R-integral element is contained in
some R-order, and every R-order is contained in some maximal R-order. When A is
a separable commutative F -algebra, then A contains a unique maximal R-order; for
example, the maximal Z-order in a number field is its ring of integers. Nonseparable
commutative algebras need not contain any maximal orders (see p. 110 of [1]).
The integral closure of R in A is the union of all maximal orders, and unless A is
commutative, the integral closure may not be closed under addition. Maximal orders
are therefore the correct generalizations of rings of integers to the noncommutative case.
Noncommutative rings generally contain infinitely many maximal orders, partitioned
into finitely many conjugacy classes.

VII.3 Twisted trace form, discriminant and different

Let R be an integrally closed Noetherian domain that is not a field and let A be a
semisimple algebra over the fraction field K of R. Let O be an R-order of A. Because
R is a Noetherian integrally closed domain, the reduced characteristic polynomial of
any element a ∈ Λ is contained in R[x] and in particular, its reduced norm and reduced
trace are in R. Because ab is integral whenever a and b are, the trace form restricts to
a nondegenerate bilinear symmetric form T : Λ× Λ→ R.
Given an involution σ on A and a u ∈ A× fixed by σ, the twisted trace form

T(σ,u)(x, y) = Trd(σ(x)uy)

is nonsingular iff u is invertible. If A is central simple it is a symmetric bilinear form
when if σ is of the first kind and a hermitian form if σ is of the second kind. If σ
stabilizes an R-lattice Λ, then T(σ,1) is integral on Λ iff Λ is an order.
If Λ∨ = {a ∈ A : Trd(σ(a)b) ∈ R} is the corresponding dual lattice, the different is
the ideal (Λ∨)−1 ⊂ Λ and the discriminant Nrd((Λ∨)−1) ⊂ R is the ideal generated
by the reduced norms of elements of the different.
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Localization

VIII.1 Local algebras

We now recall some facts about division algebras over local fields. Let k be a local field,
complete with respect to a discrete valuation v that is normalized such that v(k×) = Z.
Let o := {x ∈ k : v(x) ≥ 0} be the valuation ring and let p := πo = {x ∈ K : v(x) > 0}
be the valuation ideal, where π ∈ k× is a prime element. Let D/k be a division algebra
whose center contains k. There is a unique ([1] Theorem 12.10) extension of v to D
that we also denote by v, defined on a ∈ D as

v(a) := v(ND/k(a))
dimk(D) = v(Nk(a)/k(a))

dimk(k(a)) .

If f ∈ k[x] is the minimal polynomial of a ∈ D, then dimk(k(a)) = [k(a) : k] = deg(f)
and Nk(a)/k(a) = (−1)[k(a):k]f(0). The valuation ring OD = {a ∈ D : v(a) ≥ 0} is the
unique maximal order of D and is also the integral closure of o in D. The valuation
ideal is πDOD = {a ∈ D : v(a) > 0}, where πD ∈ D× is a prime element. One can
show ([1] Theorem 13.2) that OD := OD/πDOD is a division algebra over the residue
field F := o/p. The ramification index e(D/k) and inertial degree f(D/k) of D/k
are defined as

e(D/k) := [v(D×) : v(k×)] = 1
v(πD) , f(D/K) := dimF(OD)

and satisfy dimk(D) = e(D/k)f(D/k) ([1] Theorem 13.3). The value group is then
v(D×) = 1

e(D/k)Z, and [1] defines a corresponding normalized valuation vD = e(D/k)v
with value group Z. If o is a finite field and dimk(D) = n2, then e(D/k) = f(D/k) = n
([1] Theorem 14.3).
Given a prime ideal p of R, let kp be the corresponding completion and let Ap = A⊗kkp.
By the Artin-Wedderburn Theorem I.5.2, there is a central division algebra Dp/kp,
unique up to kp-isomorphism, such that Ap ' D

κp×κp
p . The corresponding normalized

valuation vp satisfies vp(k) = Z and admits a unique extension toDp, satisfying vp(Dp) =
1
ep
Z, where ep := e(Dp/kp). When k is a global field, then ep is equal to the local

index mp of A at p, defined as the degree of the division algebra Dp/kp appearing in
the isomorphism Ap ' Dκp×κp ([1] p. 222) calls κp the local capacity of A at p). Note
that mp is just the index of the localization Ap in the usual sense.

VIII.2 Localizations of maximal orders

If R is an integral domain, the localization S−1O of any R-order O with respect to a
multiplicatively closed set S ⊂ R is an S−1R-order that is maximal if O is maximal [1].
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If S = R−p for a prime ideal p ⊂ R, then both Rp := (R−p)−1R and Op := O⊗RRp =
(R−p)−1O are local rings. So returning to our earlier setting, given a prime ideal p ⊂ R,
we can recover the corresponding prime ideal P ⊂ O via p 7→ P = O ∩ rad(Op), and
that rad(Op) = POp = OpP .
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VIII.3 Approximation theorems

Weak approximation for Q ([4] Lemma 3.3.2):
Given xp ∈ Qp for every p in a finite set S of places and an ε > 0, there exists an x ∈ Q
such that |x− xp|p < ε for every p ∈ S. In other words, for any m ∈ N, there exists an
x ∈ Q such that x ≡ xp mod pm for every p ∈ S.
This follows from the independence of valuations on Q. In its most general form, the
latter follows from the following statement (see Lang’s Algebra): Given finitely many
inequivalent valuations ν on a field F , the diagonal embedding F → ∏

ν Fν is dense.
It is also a consequence of the following stronger version:
Strong approximation for Z ([4] Lemma 3.3.1): Given xp ∈ Zp for every p in a
finite set S of primes and an ε > 0, there exists an x ∈ Z such that |x − xp|p < ε for
every p ∈ S. Equivalently, this means that for any m ∈ N, there exists an x ∈ Z such
that x ≡ xp mod pm.
The proof is basically just the Chinese remainder theorem:
Let xd ∈ Z for d in a finite set of relatively prime positive integers d. Then there exists
an x ∈ Z such that x ≡ xd mod d for each d.
The weak approximation theorem generalizes (at least) to rational orthogonal groups:
Weak approximation for orthogonal groups ([4] Theorem 9.7.2):
Let V be a nondegenerate rational quadratic space and let S be a finite set of places.
Given gp ∈ SO(VQp) for every p in a finite set of places S, there exists a g ∈ SO(V )
approximating the gp arbitrarily well in the above sense.
Equivalently,
The image of SO(V ) under the diagonal embedding SO(V )→ ∏

p∈S SO(VQp) is dense.
Under certain conditions, strong approximation also generalizes:
Strong approximation for indefinite spin groups ([4] Theorem 10.7.1):
Let Λ be a Z-lattice of rank n ≥ 3 equipped with an indefinite Q-valued quadratic form
and for each finite prime p, let Up ⊂ Spin(ΛQp) be an open set such that Up = Spin(ΛQp)
away from a finite set S of finite primes. Then there exists a g ∈ Spin(ΛQ) such that
g ∈ Up for all finite primes p.
The utility of strong approximation in this context is that it implies a useful corollary
for the spinor kernels in the following sense.
Corollary: The same statement holds for the kernel Θ of the spinor norm on SO.
This corollary fails for the entire orthogonal groups SO because, unlike Spin, they are
not simply-connected as algebraic groups.
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VIII.4 Grothendieck-Witt group

The Witt group W (F ) of a field F consists of isometry classes of anisotropic quadratic
spaces over the field F , with operations

[V ] + [V ′] = [(V ⊕ V ′)a], −[V ] = [[−1]V ].

Here, [V ] denotes the isometry class of the quadratic space V . Note that [V ] and [−V ]
are additive inverses because V ⊕ −V ' H⊕ dim(V ) and thus (V ⊕ −V )a = 0. There is
a homomorphism W (F )→ Q(F ) taking the class of V to (disc(V ), dim(V ) mod 2).
The Witt group is a quotient of the Grothendieck-Witt group Ŵ (F ). This is the
Grothendieck group of the Grothendieck-Witt semigroup Ŵ0(F ) whose elements are
isomorphism classes [V ] of nondegenerate quadratic spaces V with addition defined as
[V ]+[W ] = [V⊕W ]. These are the same relations as in the Witt group, except that [−V ]
is no longer the additive inverse of [V ] because we are no longer disregarding hyperbolic
spaces. Instead, Ŵ (F ) consists of formal differences [V ]− [W ] of isomorphism classes of
quadratic spaces. We can also define a multiplicative structure on these groups, giving
the Witt ring and Grothendieck-Witt ring of F . It is possible to show that the
additive subgroup 〈[HF ]〉 of Ŵ (F ) is also an ideal with respect to the ring structure on
Ŵ (F ), giving an isomorphism of commutative rings

Ŵ (F )/〈[HF ]〉 ' W (F ).

What are these rings for various choices of F? We have W (R) = Z and Ŵ (R) = Z/2.
Howe says that F×q /F×q

2 generates Ŵ (Fq).
For W (Fp), with p an odd prime, there is different behavior depending on the value of
p mod 4. If p ≡ 1 mod 4, we have [1] = [−1], so that [1] + [1] = [HFp ] in Ŵ (K) and
[1] + [1] = 0 in W (F ). The group Ŵ (Fp) = 〈[up]〉, where up is any nonsquare in F×p
although we may take Ŵ (Fp) = 〈[−1]〉 if p ≡ 3 mod 4.
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VIII.5 Quadratic forms

Let M and S be modules over a ring R. A quadratic form q : M → S is a map such
that q(rv) = r2q(v) for every r ∈ R and v ∈M and such that the map Bq : M×M → S
defined by

Bq(v, w) = q(v + w)− q(v)− q(w)
is R-bilinear. We call Bq the bilinear symmetric form associated to q. When R = S
is a field and M is a vector space V then (V, q) is called quadratic space. When
R = S = Z and S is a free Z-module Λ then (Λ, q) is called a quadratic lattice. When
M is a torsion-free module Λ over R = S, then (Λ, q) is an quadratic R-lattice.
We will largely be concerned with integral lattices (Λ, q) for which one requires that
q be classically integral, meaning that q(x) = B(x, x) for some bilinear symmetric
form B : Λ×Λ→ Z, necessarily satisfying Bq = 2B. A quadratic lattice (Λ, q) is even
if q(Λ) ⊂ 2Z and otherwise it is odd. In particular,

Λ even ⇒ Λ integral, Λ integral⇒ [2]Λ even,

where [a]Λ = (Λ, aq) for a quadratic lattice (Λ, q). Given any symmetric integer matrix
K, we have that (Λ, K) := (Λ, Kijxixj) is an integral lattice that is even if each Kii ∈ 2Z
and is otherwise odd. When it is even, note that (Λ, 1

2K) is a quadratic lattice that is
not classically integral.
Given a quadratic R-lattice (Λ, q), define the dual lattice

Λ∗ = Hom(Λ, R) ' {y ∈ ΛQ : Bq(Λ, y) ⊂ R}.

and the classical dual lattice

Λ# = Hom(Λ, 2R) ' {y ∈ ΛQ : Bq(Λ, y) ⊂ 2R} = [2]Λ∗,

where we write [a]Λ for the quadratic lattice (Λ, aq). If Λ is classically integral, then

Λ∗ ' {y ∈ ΛQ : 2B(Λ, y) ⊂ R} and Λ# ' {y ∈ ΛQ : B(Λ, y) ⊂ R},

in which case Λ# coincides with the usual notion of dual lattice from the theory of
integral lattices. We have (Zn, K)# ' (Zn, K−1

ij ) and Λ∗ ' (Zn, 1
2K
−1
ij ). Note that

[Λ# : Λ∗] = 2rank(Λ) and in fact we have an extension

0→ Λ#/Λ→ Λ∗/Λ→ (Z/2)n → 0.

Probably this splits when 2 - [Λ# : Λ].
Let (Λ, q) and (Λ′, q′) be quadratic lattices. For any ring R extending Z, we write
ΛR = Λ ⊗Z R and extend q to ΛR in the obvious way. Given rings R′ ⊃ R ⊃ Z, an
isometry ϕ : ΛR → Λ′R′ is an R-linear map for which q = q′◦ϕ. We write Isom(ΛR,Λ′R′)
for the set of isometries from ΛR to Λ′R′ and write ΛR ' Λ′R to mean that ΛR and Λ′R
are isometric, i.e. that each of Isom(ΛR,Λ′R) and Isom(Λ′R,ΛR) is non-empty.
Isometries of rational quadratic spaces obey a local-global principle:
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Theorem VIII.5.1 (Hasse-Minkowski) Let V and V ′ be quadratic spaces over Q.
Then V ' V ′ iff VR ' V ′R and VQp ' V ′Qp

for every prime number p.

Isometries of quadratic lattices, on the other hand, do not generally obey a local-global
principle. Instead, quadratic lattices Λ and Λ′ are said to be in the same genus if
ΛR ' Λ′R and ΛZp ' Λ′Zp

for every prime p.
Given any R-lattice Λ in a vector space V , there is a bijection

{R-lattices ⊂ V } → GL(V )/GL(Λ).

Given a quadratic form q on V , we may take a further quotient to obtain the space of
abstract lattices appearing in V :{ isometry classes

of R-lattices ⊂ V

}
→ O(V )\GL(V )/GL(Λ).

We note that this space of double cosets is also in bijection with the GL(Λ)-equivalence
classes of quadratic forms on V isometric to q but for now we will not use this viewpoint
as it does not generalize nicely to spinor genera.
Recall that

Ẑ = lim←−Z/n ⊂
∏′Qp = Af

where the restricted direct product ∏′ carries the product topology (its open sets
are unions of products of open subsets of the Qp that all but finitely many terms are
contained in Zp) For a quadratic lattice Λ ⊂ V , let Λ̂ := ΛẐ ⊂ VAf

. While we still get
the same bijection

{lattices ⊂ V } → GL(VAf
)/GL(Λ̂)↔ GL(V )/GL(Λ)

on isometry classes of lattices, the adeles enable us to capture more arithmetic infor-
mation about the lattices in V :{ lattices ⊂ V in

the genus of Λ

}
→ O(VAf

)/O(Λ̂).


isometry classes
of lattices ⊂ V

in the genus of Λ

→ O(VAf
)\GL(VAf

)/GL(Λ̂).

Genus(Λ) = O(V )\O(VAf
)/O(Λ̂).

For an oriented lattice (Λ, θ), where θ is one of the two possible Z-bases of the top
exterior power of ∧nΛ, one has the proper genus

Genus+(Λ) = SO(V )\SO(VAf
)/SO(Λ̂).
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Example VIII.5.1 If (Λ, q) = (Z, x2), then B(x, y) = x.y and Bq(x, y) = 2x.y,
giving Λ# = Z and Λ∗ = 1

2Z. In particular, Λ∗/Λ ' Z/2.

Example VIII.5.2 The lattice (Z2, x1x2) = (Z2, 1
2σx) is integral but not classically

integral, whereas (Z2, 2x1x2) = (Z2, σx) and (Z2, x2
1−x2

2) = (Z2, σz) are classically
integral.

Example VIII.5.3 Let A/K be an algebra over a field K. Left multiplication
by a ∈ A is a K-linear transformation `a : A → A. The relative norm is the
homomorphism NA/K : A → K defined by NA/K(a) = det(`a) and the relative
trace TrA/K : A→ K is the linear map TrA/K(a) = Tr(`a).

Example VIII.5.4 For a Galois extension F/K of number fields, the relative
norm NF/K : F → K has the explicit formula

NF/K(x) =
∏

σ∈Gal(F/K)
xσ.

Example VIII.5.5 A quadratic field Q(
√
D) has NQ(

√
D)/Q(x+y

√
D) = x2−Dy2.

Example VIII.5.6 Let let A/K be a central simple algebra over a field K with
dimK A = n2 (the degree [A : K] is

√
dimK A = n). Suppose that L is a

splitting field for A, so that AL ' Ln×n. Therefore A contains a commutative
subalgebra isomorphic to L and the K-algebra homomorphism A → Ln×n given
by composing the map a 7→ a ⊗ 1L with any isomorphism A ⊗ 1L → Ln×n is
injective. The reduced norm Nrd: A → K is the quadratic form Nrd(a) =
det(a ⊗K 1L), which is also well-defined by replacing L with any number field
splitting A. The reduced trace Trd: A → K is similarly defined as Trd(a) =
Tr(a ⊗ 1L). These are related to the ordinary norm and trace (where we view
A as a subalgebra of the superoperators End(Ln×n)) via Tr(a) = nTrd(a) and
N(a) = Nrd(a)n.

Example VIII.5.7 For a special case of the above, recall that a rational quaternion
algebra A =

(
a,b
K

)
over a field K carries a nontrivial involution taking v = v0 +

v1i+ v2j + v3ij to v̄ = v0 − v1i− v2j − v3ij. Then

Nrd(v) = vv̄ = v2
0 − av2

1 − bv2
2 + abv2

3 ( = v2
0 + v2

1 + v2
2 + v2

2 if a = b = −1)
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and Trd(v) = v + v̄ = 2v0, with associated bilinear form

BNrd(v, w) = Nrd(v + w)− Nrd(v)− Nrd(w)
= Trd(vw̄) = vw̄ + wv̄

= 2(v0w0 − av1w1 − bv2w2 + abv3w3).

On the other hand, we have another (untwisted) quadratic form

Q(v) = v2 = v2
0 + av2

1 + bv2
2 − abv2

3 ( = v2
0 − v2

1 − v2
2 − v2

3 if a = b = −1)

along with its associated bilinear form BQ(v, w) = Trd(vw).
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VIII.5.1 Classifying quadratic lattices

Assume that ΛR ' Λ′R (i.e. they have the same signature) and det(Λ) = det(Λ′). Then

ΛQ ' Λ′Q ΛQp ' Λ′Qp
∀p

Genus(Λ) = Genus(Λ′) ΛZp ' Λ′Zp
∀p

SpGenus(Λ) = SpGenus(Λ′)
∃Λ′′ 'Q Λ

and gp ∈ Spin(ΛQp)
s.t. gp(ΛZp) = Λ′′Zp

)∀p.
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VIII.6 Global structure of algebras

Here are some fundamental structure theorems about algebras over global fields.
Hasse Norm Theorem. Let F/K be cyclic and let a ∈ K×. Then a ∈ NF/K(F×)
iff, for every prime p of K, a ∈ NFP/Kp(F×P ) for some (and hence any) prime P of F
dividing p.
Some people (e.g. [8]) call it the Hilbert-Furtwängler-Hasse norm theorem as it was
proved by Hilbert in 1897 for quadratic extensions, by Furtwängler in 1902 for exten-
sions of prime degree, and by Hasse in 1931 for the general cyclic case.
Local global principle for algebras (Albert-Brauer-Hasse-Noether). A central
simple algebra A/K splits if and only if AKp splits for every prime p of K. Equivalently,
the natural homomorphism

Br(K)→
⊕
p

Br(Kp)

is injective.
The image of Br(K) is precisely characterized via the following exact sequence

1→ Br(K)→
⊕
p

Br(Kp)
∑

invp

−−−−−→Q/Z→ 0.

Main Theorem (Albert-Brauer-Hasse-Noether). Every central simple algebra
over a number field is cyclic.
([8] p. 5, [1] p. 259). The proof follows from the next two theorems.
Given a Galois extension F/K of number fields and a prime p of K, let Kp be the
completion of K at p. Then there a K-algebra isomorphism

F ⊗K Kp '
∏
P|p
FP,

where the sum is over primes P of F above p. All the FP are isomorphic because
Gal(F/K) is Galois.
Given a field K, let s(K) be the largest integer s for which Q(ζ2s + ζ−1

2s ) ⊂ K but
Q(ζ2s) 6⊂ K. Then [27] K is called s(K)-special.
Grunwald-Wang Theorem. Let K be a number field, let S0 be the set of (necessarily
even) primes p for which s(K) = s(Kp). Given any finite set S of primes and any
n ∈ N, the group (K×)n of nth powers is equal to the subgroup

K× ∩
⋂
p∈S

(K×p )n

of K× containing those elements with an nth root in Kp for each p ∈ S, unless S0 ⊂ S
and 2s+1|n, in which case (K×)n is an index-2 subgroup.



Chapter IX
Class numbers

Main source is [1] (ch. 15–16 on Morita equivalence, ch. 26 on ideal classes, ch. 27 on
genus, ch. 36 on K0 of maximal orders and ch. 37 on Picard groups). Other possible
sources include Milnor’s Introduction to algebraic K-theory, Lam’s First Course on
Noncommutative Rings.

IX.1 Morita equivalence

Two R-algebras A1, A2 are Morita equivalent if their categories A1-mod and A2-mod
of modules are R-linearly equivalent. An A1-A2-bimodule M12 is R-invertible if there
exists a Morita context, i.e. an A2-A1-bimodule M21 over R (on which the left and
right R-actions coincide) together with bimodule isomorphisms

M12 ⊗A2 M21 ' A1, M21 ⊗A1 M12 ' A2

such that the following diagrams commute:

M12 ⊗A2 M21 ⊗A1 M12 A1 ⊗A1 M12

M12 ⊗A2 A2 M12,

M21 ⊗A1 M12 ⊗A2 M21 A2 ⊗A2 M21

M21 ⊗A1 A1 M21.

Theorem IX.1.1 Two R-algebras A1, A2 are Morita equivalent iff there exists an
invertible A1-A2-bimodule over R.

The group [1] (37.5) PicR(A) of isomorphism classes of invertible A-bimodules over R
with multiplication [M ] · [N ] = [M⊗ΛN ] is the (relative) Picard group. It is a subgroup
of the absolute Picard group Pic(A) = PicZ(A), which accounts for all isomorphicm
classes over Z and depends only on the underlying ring of A. Morita-equivalent rings
have isomorphic centers and isomorphic Picard groups. Equivalence over R means their
centers are R-linearly isomorphic.

IX.2 Two-sided ideal class group of an order

Let R be an integral domain with quotient field K and let O be an R-order in a
K-algebra A. The group I(O) of invertible two-sided O-ideals in A lies in an exact
sequence ([1] Theorem 37.23):

1→ Z(O)× → Z(A)× → I(O)→ Picent(O)→ Picent(A).
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If A is semisimple, then Corollary 37.24 of [1] shows that

Picent(O) ' I(O)/{Ox : x ∈ (KZ(O))×}.

If A/K is furthermore central simple, then

Picent(O) = PicR(O) ' I(O)/P (O),

where P (O) = {Ox : x ∈ K×} is the principal invertible two-sided O-ideals in A.

IX.3 Genus and equivalence of fractional ideals

Throughout this section let R be a Dedekind domain with quotient field K and let O
be an R-order in a K-algebra A.
Two left O-ideals M,N ⊂ A are isomorphic iff there exists an a ∈ A× such that
Ma = N . The class number h(O) of O is the number of isomorphism classes of left
O-ideals in A under this right action. If A is semisimple and K is a global field, then
h(O) is finite by the the Jordan-Zassenhaus Theorem (Theorem 26.4 in [1]), which in
this case states that there are finitely many isomorphism classes of left O-lattices of a
given finite rank.
Two left O-lattices M,N are in the same genus if Np ' Mp as Op-ideals for every
prime ideal p ⊂ R. If O is maximal and K is separable, then ([1] Theorem 27.4) all
left O-ideals of A are in the same genus as O, and if M1, . . . ,Mn are left O-ideals in A,
there exists a left O-ideal M such that

M1 ⊕ · · · ⊕Mn ' O⊕n−1 ⊕M.

If A is a central simple K-algebra, the genus considerations above imply ([1] 35.5) that
the stable isomorphism classes of left O-ideals of A form an abelian group that, when
O = R, coincides with the ordinary class group of isomorphism classes of fractional R-
ideals of K, with a, b ⊂ K isomorphic precisely when they are isomorphic as R-modules,
or equivalently, when a = bx for some x ∈ K.
When A is furthermore separable, the group of two-sided O-ideals can be described as
follows. Theorem 37.28 of [1] shows that if A is separable, there is an exact sequence

1→ Picent(Z(O))→ Picent(O)→
∏

p∈Spec(R)
Picent(Op)→ 1

where Op denotes p-adic completion. Corollary 37.32 of [1] then shows that when O is
a maximal R-order and A is a central-simple K-algebra, then

1→ CL(R)→ Picent(O)→
∏
p

Z/ep → 1,

where the ep is the ramification index of the division algebra D = HomKp(Ap) in the
Brauer class of Ap, which is 1 except possibly for primes p dividing disc(O). Over global
fields, ep is the local index mp of A at p.
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IX.4 Class groups and K0

Let R be a commutative ring. If P is a projective R-module, let [P ] be its isomorphism
class. The Grothendieck ring of the category of finite generated projective R-modules
is

K0(R) =
〈
[P ] : P

〉/〈
[P ] + [Q]− [P ⊕Q] : P,Q

〉
.

Elements of K0(R) correspond to stable isomorphism classes of projective R-modules
because [P ] = [Q] iff P ⊕Rn ' Q⊕Rn for some n. I think that

K0(R) = {rank-1 projective R-modules}/{rank-1 free R-modules}

but I’m not sure if this requires further qualifications of R. A multiplication is defined
on K0(R) via [P ] · [Q] = [P ⊗R Q], making K0(R) into a commutative ring whose unit
group K0(R)× is equal to the the Picard group

Pic(R) = {invertible fractional ideals of R}/{principal fractional ideals of R}.

and the ideal class monoid of an integral domain R is

CL(R) = {fractional ideals of R}/{principal fractional ideals of R}.

These sit in an exact sequence

1→ R× → K× → {invertible fractional R-ideals} → Pic(R)→ 1.

In general Pic(R) is defined to be the group of invertible sheaves on Spec(R). When
R is a Dedekind domain, R is a smooth affine curve. The Noetherian domain Z[

√
5]

satisfies Spec(Z[
√

5]) = Spec
(
Z
[

1+
√

5
2

])
\ (2). In general if O ⊂ K is an order the ring

class group is Pic(O) ' Gal(KO/K(1)).

IX.5 Morita equivalence for local rings

If A is a local ring, its Morita equivalence class consists of the rings An×n of matrices
over A.
Note below that division algebras are local, which implies the corresponding structure
for CSAs.



Chapter X
Appendix

X.1 Super and spin modular categories

If C is a braided fusion category, its Muger center Z2(C) = C′ (a.k.a. symmetric
center) is the (symmetric) fusion subcategory generated by the simple objects that
braid trivially with everything else. A premodular category C is modular iff C′ = Vec
and is called super modular if C′ = sVec = Rep(Z/2,−1). It is symmetric iff C′ = C.
A super modular category satisfies

S =
(

1 1
1 1

)
⊗ Ŝ, T =

(
1 0
0 −1

)
⊗ T̂ ,

where Ŝ is unique but T̂ only unique up to a sign (cf quadratic refinement). See [28]:
〈Ŝ, T̂ 〉 finite when C has a minimal modular extension..
If C is a fusion category, then the Drinfeld center Z1(C) is a modular category.
Spin modular category is a modular category with a distinguished fermion (i.e. a
simple object f with f ⊗ f ' 1). A modular extension of a super modular category is
spin modular.

X.2 2+1D TQFTs with boundary

(Super)modular categories classify (spin)TQFTs. The objects of the category are local
excitations in the TQFT. The gauss sums p± of the modular category of a TQFT on
D2 × R and the central charge c− of a CFT on the boundary S1 × R must satisfy

e2πic−/8 = p+/D =
√
p+/p−.

{cats} {⊗-cats} {braided⊗ -cats} {symmetric⊗ -cats}Z0 Z1 Z2

Monoidal center Z0(C) = End(C)
Drinfeld center Z1(T) = quantum double
Symmetric (Muger) center Z2(B) = {a : ca,b = 1 ∀b ∈ B}
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X.3 Association schemes

Let X be a set. An association scheme on X with m classes is a set of subsets
R0, R1, . . . , Rm ⊂ X ×X satisfying

1. ⊎na=0 Ra = X ×X

2. R0 = {(x, x) : x ∈ X}

3. For each a, there is an a′ such that Ra′ = {(y, x) : (x, y) ∈ Ra}.

4. There exist N c
ab ∈ N0 such that for all (a, b) ∈ Rc,

N c
ab = |{z : (x, z) ∈ Ra and (z, y) ∈ Rb}|.

Given an association scheme, let Ai ∈ {0, 1}|X|×|X| be such that (Ai)xy = 1 only when
(x, y) ∈ Ri. Then

1. ∑iAi is the all-1 matrix.

2. A0 = I

3. For each i, there is an i′ such that ATi = Ai′

4. Z[A0, A1, . . . , Am] = ZA0 + ZA1 + · · · + ZAm, i.e. AiAj = ∑
kN

k
ijAk for some

Nk
ij ∈ N0.

This serves as an alternative definition of an association scheme.
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X.4 Triangulated categories

A translation or shift functor on a category C is an additive automorphism Σ : C→ C.
Write a[n] = Σna for the degree shift. A triangulated category is an additive category
C with a shift functor equipped with a family of exact triangles

a→ b→ c→ a[1]

satisfying a bunch of conditions.
Examples include the derived category of any abelian category and the stable homotopy
category. Different abelian categories can have equivalent derived categories, and t-
structures parameterize these different degree-0 abelian subcategories.
There is also a K0 for a triangulated category. The homotopy category of a stable
∞-category has a canonical triangulation, whose K0 is generalized by the higher Kis of
the stable ∞-category.

X.5 Grothendieck topologies

https://en.wikipedia.org/wiki/Grothendieck_topology

A subfunctor G ⊂ F of a presheaf F is presheaf G such that G(U) ⊂ F(U) for all
objects U and G(f) = F(f)|G(x) for all morphisms f : V → U .
A sieve on an object U ∈ C is a subfunctor S(U) of the functor of points Hom(−, U).
For each morphism f : V → U , the pullback

f ∗S(U) = S(U)×Hom(−,U) Hom(−, V ) ↪→ Hom(−, V )

is a sieve on V . A Grothendieck topology J on C consists of covering sieves J(U)
on the objects U satisfying the following conditions:

• If f : V → U , then f ∗ : J(U)→ J(V ).

• Hom(−, U) ∈ J(U) for all U ∈ C.

• If S ∈ J(U) and a sieve T on U satisfies f ∗T ∈ J(V ) for all f ∈ S(U)∩Hom(V, U),
then T ∈ J(U).

A Grothendieck topology can also be specified in terms of a Grothendieck pretopol-
ogy consisting of covering families (see above Wikipedia page for now) if C has
enough fibered products.
A site is a category equipped with a Grothendieck topology. Each topological space
determines a site and the space can be recovered iff it is sober. Luckily the Zariski
topology is sober. Sober sits in-between T1 and T2. See
https://en.wikipedia.org/wiki/Sober_space

https://en.wikipedia.org/wiki/Grothendieck_topology
https://en.wikipedia.org/wiki/Sober_space
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A sheaf on a site (C, J) is a presheaf F on C such that

Hom(Hom(−, U),F)→ Hom(F , U)

is a bijection for all U .

X.6 Quivers

A quiver Γ = (V,E) is a directed multigraph with possible self-loops. A represen-
tation of Γ is a functor from its category Path(Γ) of paths to another linear category
such as the category of finite-dimensional vector spaces over some field.
A quiver is of finite type if it has finitely many isomorphism classes of indecomposable
representations.

Theorem X.6.1 (Gabriel’s Theorem [29]) The finite-type connected quivers are
the ADE diagrams and their indecomposable representations correspond to the
the positive roots of the corresponding root systems.

X.7 Stacks

https://stacks.math.columbia.edu/tag/0268

https://stacks.math.columbia.edu/tag/0268
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